(x-y*ln(y)+y*ln(x))dx+x(ln(y)-ln(x))dy=0

Simple and best practice solution for (x-y*ln(y)+y*ln(x))dx+x(ln(y)-ln(x))dy=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-y*ln(y)+y*ln(x))dx+x(ln(y)-ln(x))dy=0 equation:


Simplifying
(x + -1y * ln(y) + y * ln(x)) * dx + x(ln(y) + -1ln(x)) * dy = 0

Multiply y * ln
(x + -1lny * y + y * ln(x)) * dx + x(ln(y) + -1ln(x)) * dy = 0

Multiply lny * y
(x + -1lny2 + y * ln(x)) * dx + x(ln(y) + -1ln(x)) * dy = 0

Multiply y * ln
(x + -1lny2 + lny * x) * dx + x(ln(y) + -1ln(x)) * dy = 0

Multiply lny * x
(x + -1lny2 + lnxy) * dx + x(ln(y) + -1ln(x)) * dy = 0

Reorder the terms:
(lnxy + -1lny2 + x) * dx + x(ln(y) + -1ln(x)) * dy = 0

Reorder the terms for easier multiplication:
dx(lnxy + -1lny2 + x) + x(ln(y) + -1ln(x)) * dy = 0
(lnxy * dx + -1lny2 * dx + x * dx) + x(ln(y) + -1ln(x)) * dy = 0

Reorder the terms:
(-1dlnxy2 + dlnx2y + dx2) + x(ln(y) + -1ln(x)) * dy = 0
(-1dlnxy2 + dlnx2y + dx2) + x(ln(y) + -1ln(x)) * dy = 0

Multiply ln * y
-1dlnxy2 + dlnx2y + dx2 + x(lny + -1ln(x)) * dy = 0

Multiply ln * x
-1dlnxy2 + dlnx2y + dx2 + x(lny + -1lnx) * dy = 0

Reorder the terms:
-1dlnxy2 + dlnx2y + dx2 + x(-1lnx + lny) * dy = 0

Reorder the terms for easier multiplication:
-1dlnxy2 + dlnx2y + dx2 + x * dy(-1lnx + lny) = 0

Multiply x * dy
-1dlnxy2 + dlnx2y + dx2 + dxy(-1lnx + lny) = 0
-1dlnxy2 + dlnx2y + dx2 + (-1lnx * dxy + lny * dxy) = 0

Reorder the terms:
-1dlnxy2 + dlnx2y + dx2 + (dlnxy2 + -1dlnx2y) = 0
-1dlnxy2 + dlnx2y + dx2 + (dlnxy2 + -1dlnx2y) = 0

Reorder the terms:
-1dlnxy2 + dlnxy2 + dlnx2y + -1dlnx2y + dx2 = 0

Combine like terms: -1dlnxy2 + dlnxy2 = 0
0 + dlnx2y + -1dlnx2y + dx2 = 0
dlnx2y + -1dlnx2y + dx2 = 0

Combine like terms: dlnx2y + -1dlnx2y = 0
0 + dx2 = 0
dx2 = 0

Solving
dx2 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Simplifying
dx2 = 0

The solution to this equation could not be determined.

See similar equations:

| =8y+7z+4 | | 38-9x=18-11x | | (11a+5)(a-11)=0 | | -10-15y=-18 | | -2x=-5x+24 | | (x-y*ln(y)+y*ln(x))dx+x(ln(y)-ln(x))dx=0 | | 3(3x+4)=7x+8 | | 2*x+3*(17-x)=41 | | 8b^5+12b^2= | | -6p-4q=18 | | 4v+32=96 | | 4(x-1)=3-3(x+14) | | 2c-5d=20 | | -20=-6v+15 | | X^2=16x-44 | | 3x+6x-24= | | y=10.4 | | 985-w=12 | | (4+3i)x(4-3i)= | | x-(-12)=73 | | 6(6)-4=11y+2 | | 4x+9x-88=44-9x | | 8x+9=317 | | (3x+4)-2x=7x-3(-2x+11) | | 10+3(x+3)=31 | | ln(x+2)+lnx=0 | | -25=-6v+15 | | 8(x+8)+8x= | | 2xy-7y^2-2x^2+6=0 | | 56k-67=77 | | 2x^2-2xy+7y^2=6 | | r^2=75 |

Equations solver categories