(x/15)+13=(20/x)-2

Simple and best practice solution for (x/15)+13=(20/x)-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x/15)+13=(20/x)-2 equation:



(x/15)+13=(20/x)-2
We move all terms to the left:
(x/15)+13-((20/x)-2)=0
Domain of the equation: x)-2)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+x/15)-((+20/x)-2)+13=0
We get rid of parentheses
x/15-((+20/x)-2)+13=0
We calculate fractions
x^2/15x+()/15x+13=0
We multiply all the terms by the denominator
x^2+13*15x+()=0
We add all the numbers together, and all the variables
x^2+13*15x=0
Wy multiply elements
x^2+195x=0
a = 1; b = 195; c = 0;
Δ = b2-4ac
Δ = 1952-4·1·0
Δ = 38025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{38025}=195$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(195)-195}{2*1}=\frac{-390}{2} =-195 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(195)+195}{2*1}=\frac{0}{2} =0 $

See similar equations:

| -16t^2+134t+62=266 | | x/15+13=20/x-2 | | 2(-3.4+-1.6y)-7y=17 | | 7x/10-3x/5=5x/8-21/20 | | 2(x-5)+(x-2)=8+7(x-4) | | 2(x-2)+(x-2)=8+7(x-4) | | 4-9÷x=3+2x÷x | | 2x3+4=2x | | ,2x+3=x-5 | | 1,5x-6=0,5x-4 | | 0,1x+1,5=0,5x-2,5 | | -24x-78=-6 | | x^2=−169 | | 4.905x^2-18x+3.7=0 | | 10x-4x=26 | | x=9=23 | | Y=(4x+2) | | (3x+x)+4=56 | | 4(3x+x)=56 | | 3x+x(4)=56 | | 3a-4=3(a+1)+7a+1 | | 12x+x=56 | | -2x+16=8x-8 | | n/2-3=20 | | 2a-9=7(a+1)+11a+3 | | (22-2q)+(9q-9)=55 | | x/6*9=14 | | 4x-3/3-6(x-1)/4=0 | | x=0.6666666666666667 | | 28+x=3*x | | 3(5c+2)=6(5c+1) | | 3x+6=3x+13 |

Equations solver categories