(x/2)+2=11/(3-x)

Simple and best practice solution for (x/2)+2=11/(3-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x/2)+2=11/(3-x) equation:



(x/2)+2=11/(3-x)
We move all terms to the left:
(x/2)+2-(11/(3-x))=0
Domain of the equation: (3-x))!=0
We move all terms containing x to the left, all other terms to the right
-x)!=-3
x!=-3/1
x!=-3
x∈R
We add all the numbers together, and all the variables
(+x/2)-(11/(-1x+3))+2=0
We get rid of parentheses
x/2-(11/(-1x+3))+2=0
We calculate fractions
2x^2/(-2x)+()/(-2x)+2=0
We multiply all the terms by the denominator
2x^2+2*(-2x)+()=0
We add all the numbers together, and all the variables
2x^2+2*(-2x)=0
We multiply parentheses
2x^2-4x=0
a = 2; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·2·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*2}=\frac{0}{4} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*2}=\frac{8}{4} =2 $

See similar equations:

| 5(2d+1)+7(4d+2)=0 | | k/5-5=4 | | 26+3p=62 | | 12(3+y)=5(24+8 | | -11=3k-7 | | 5(c-79)=95 | | w/8+-44=-53 | | -5(d+2)-3d=-50 | | 63+46=a+51 | | 2-b/3=1/2 | | 6(y+12)=84 | | 11+m-1/4m=1/4m-1/4m-2m-1/4m | | 11x+6=3(4x+4) | | 3-x/2=12 | | -5x+0=2 | | 20-3h=-40 | | 7+1/4x=25 | | 3x+2(4x-1-9x)=6x-1 | | 11+3/4m=7/4m | | 6x+3x–3x–x=20 | | s-87/2=6 | | 9(5x-8)+4=-9(6-6x) | | t/5-3=2 | | m/2+13=17 | | -7(4K-6)=-36-2k | | X+2x-16=90 | | 21/x=6 | | 6+6p=-7(4+4p) | | m/9-71=-64 | | 1.4y=16.8 | | y=1/5-4 | | 2x+2-3x+5=3+5 |

Equations solver categories