(x/5)-(x/6)=(7/6)

Simple and best practice solution for (x/5)-(x/6)=(7/6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x/5)-(x/6)=(7/6) equation:



(x/5)-(x/6)=(7/6)
We move all terms to the left:
(x/5)-(x/6)-((7/6))=0
We add all the numbers together, and all the variables
(+x/5)-(+x/6)-((+7/6))=0
We get rid of parentheses
x/5-x/6-((+7/6))=0
We calculate fractions
216x^2/()+(-5x)/()+()/()=0
We add all the numbers together, and all the variables
216x^2/()+(-5x)/()+1=0
We multiply all the terms by the denominator
216x^2+(-5x)+1*()=0
We add all the numbers together, and all the variables
216x^2+(-5x)=0
We get rid of parentheses
216x^2-5x=0
a = 216; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·216·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*216}=\frac{0}{432} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*216}=\frac{10}{432} =5/216 $

See similar equations:

| x+122=x | | x2=17x+60 | | 3(8+2.666666667y)-8y=24 | | 4x2+-250=0 | | 6x+7=10+5x | | X-20=2x+12 | | .5(14z+10)-4=6(z-8) | | 4/3x+4=4/19 | | 4q^2+7q-2=0 | | -3-9|-3x+6|=60 | | (x/6)+1/2=5/12 | | 4^2n=64 | | 2^-x-3=16 | | 9x+7=12x+7 | | x−3−3x=5 | | 12z2-44z=45 | | 15.x−3−3x=5 | | 12z2-44z-45=0 | | 6+4q=2-2q | | 5q-4=2q-8 | | 200=180+20x | | (9x-5)+4=10+8x | | 2-13x=-63 | | |4y|=0 | | x(5x-2)=(5x+4)(x-1) | | 8x-14+2x+54=180 | | x(4x-8)=(4x+7)(x-5) | | x+4/6=5/3+x-8/4 | | x=4/6=5/3+x-8/4 | | 28-4+8y-2y+4=-10y+14-6y+6-8y+8 | | 75-t2=0 | | 9n+4=69 |

Equations solver categories