(x/x-2)+(x-1/x+1)=-1

Simple and best practice solution for (x/x-2)+(x-1/x+1)=-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x/x-2)+(x-1/x+1)=-1 equation:



(x/x-2)+(x-1/x+1)=-1
We move all terms to the left:
(x/x-2)+(x-1/x+1)-(-1)=0
Domain of the equation: x-2)!=0
x∈R
Domain of the equation: x+1)!=0
x∈R
We add all the numbers together, and all the variables
(x/x-2)+(x-1/x+1)+1=0
We get rid of parentheses
x/x+x-1/x-2+1+1=0
Fractions to decimals
-1/x+x-2+1+1+1=0
We multiply all the terms by the denominator
x*x-2*x+1*x+1*x+1*x-1=0
We add all the numbers together, and all the variables
x+x*x-1=0
Wy multiply elements
x^2+x-1=0
a = 1; b = 1; c = -1;
Δ = b2-4ac
Δ = 12-4·1·(-1)
Δ = 5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{5}}{2*1}=\frac{-1-\sqrt{5}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{5}}{2*1}=\frac{-1+\sqrt{5}}{2} $

See similar equations:

| 5t+10+2-1=20 | | 2(2x+3=3x+10 | | 2a(a+7)=36 | | -9e-15=39 | | 2a(a+7)2=36 | | .08x+60=200 | | 16/57=x/100 | | .8x+60=200 | | -4(9+5x)=-56 | | 9w+44=-5(w-6) | | 2x+45-3x=67 | | 4/5=-11r-2/3 | | -2w+9=8w−9−7w | | 5y-4/3=y-3/5+11 | | -6(-7+4x)=42 | | 2d^2+15d+23=3 | | 5(u-5)-7u=-19 | | -5y+3(y+7)=33 | | 2d^2-19d+14=-6d | | 30=2(w+3+w) | | 5p+6=-4p-8  | | 3x-20=6x-16 | | 4x^2+39x+88=0 | | 3x+15=90+39 | | 3/8p+7/16p-3/4=1/4+p/16+1/2 | | a^2+5a−8=0 | | k-7.210=19 | | a^​2​​+5a−8=0 | | 5(x-4)^2-119=0 | | 96=2w+2(3w) | | 3x+15=180+39 | | -10+7h=-8+5h |

Equations solver categories