(x2)+32=180

Simple and best practice solution for (x2)+32=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x2)+32=180 equation:



(x2)+32=180
We move all terms to the left:
(x2)+32-(180)=0
We add all the numbers together, and all the variables
x^2-148=0
a = 1; b = 0; c = -148;
Δ = b2-4ac
Δ = 02-4·1·(-148)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{37}}{2*1}=\frac{0-4\sqrt{37}}{2} =-\frac{4\sqrt{37}}{2} =-2\sqrt{37} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{37}}{2*1}=\frac{0+4\sqrt{37}}{2} =\frac{4\sqrt{37}}{2} =2\sqrt{37} $

See similar equations:

| 35=2a=7a | | (Xx2)+32=180 | | 16.95+.77m=134.76 | | -3(6y-2)+5y=2(y+6) | | 3x-2-8x=8 | | 3(x-1)-3=-3(-5x+6)-4x | | -9(w-3)=-2w-22 | | 9u+22=2(u-3) | | 2(u+8)-6u=4 | | 4w^2+13w-12=0 | | -14=4(w-2)-7w | | 20v−5−12v=10v+8 | | -8v+6(v+2)=28 | | x+(x+3)+(x/2)=78 | | C=10(r+.1) | | C=10(x+.1) | | 16-4(5-2x)=4(x-1) | | X/5+4/2x+11/20=5x+1/4 | | n+(n+1)=10000 | | (4y-15)+(3y+15)=180 | | X/5+1-1/2x+11/20=5x+1/4 | | 16(3x-1)=(12x+6) | | 0.10x+0.25(30-x)=30(0.15) | | 20y+5y=15 | | ((x+0.5)*4-2)/2=48 | | x+(x/2)=6 | | 9x-(x+3)=8(x+8)+4 | | 20a+10(319-a)=5860 | | 2(2x-3)=3x-2 | | (−3y+1)(4y+4y−y−7)=0 | | (3x-2)^2-11(3x-2)=-28 | | 2(x+6)=2(x+1) |

Equations solver categories