(x2+1)2+2(x2+1)-35=0

Simple and best practice solution for (x2+1)2+2(x2+1)-35=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x2+1)2+2(x2+1)-35=0 equation:



(x2+1)2+2(x2+1)-35=0
We add all the numbers together, and all the variables
(+x^2+1)2+2(+x^2+1)-35=0
We multiply parentheses
2x^2+2x^2+2+2-35=0
We add all the numbers together, and all the variables
4x^2-31=0
a = 4; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·4·(-31)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{31}}{2*4}=\frac{0-4\sqrt{31}}{8} =-\frac{4\sqrt{31}}{8} =-\frac{\sqrt{31}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{31}}{2*4}=\frac{0+4\sqrt{31}}{8} =\frac{4\sqrt{31}}{8} =\frac{\sqrt{31}}{2} $

See similar equations:

| (22÷100)×a=154 | | 8x2-4x-10=0 | | 6s+13=67s= | | x3^+13/2=20 | | x3+13/2=20 | | 2/3x-7=1/3-1/6x | | -x2+90x-2000=0 | | 3*x/2-(30)=0 | | 2x+3-8+x=55 | | 3(4d+1)-9d=6(2+d | | x=5+(-9.8)(0.51) | | x=5+(-9.8)(0.71) | | x=5+9.8(0.71) | | x=5+9.8(0.51) | | 3y-2/3+2y+3/3=y+7/6 | | 2.5(6.5r-7.8)=94.9 | | 15000=x+(x*0.9) | | e+5=20-3e | | d+5=20-3d | | 9x/4=81x/20 | | 20=n^2-3n | | 3x/4+2=9x-6 | | 27x/15=81/25 | | 0=5.0+9.8t | | (3-x)^2=25 | | 0=5.0+(-9.8)t | | a2+16=0 | | 20=n(n-3) | | X^2-5x-2=6 | | 30/4x=15/2x | | 27x-5=(4x-2)/5 | | Y=-1/5x+4 |

Equations solver categories