(x2+5)-6=(9x+18)3

Simple and best practice solution for (x2+5)-6=(9x+18)3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x2+5)-6=(9x+18)3 equation:



(x2+5)-6=(9x+18)3
We move all terms to the left:
(x2+5)-6-((9x+18)3)=0
We add all the numbers together, and all the variables
(+x^2+5)-((9x+18)3)-6=0
We get rid of parentheses
x^2-((9x+18)3)+5-6=0
We calculate terms in parentheses: -((9x+18)3), so:
(9x+18)3
We multiply parentheses
27x+54
Back to the equation:
-(27x+54)
We add all the numbers together, and all the variables
x^2-(27x+54)-1=0
We get rid of parentheses
x^2-27x-54-1=0
We add all the numbers together, and all the variables
x^2-27x-55=0
a = 1; b = -27; c = -55;
Δ = b2-4ac
Δ = -272-4·1·(-55)
Δ = 949
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-\sqrt{949}}{2*1}=\frac{27-\sqrt{949}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+\sqrt{949}}{2*1}=\frac{27+\sqrt{949}}{2} $

See similar equations:

| 2x-8=x+59 | | 5y+7=-14+8y | | 4(-8+5)=32x=26 | | 8(3x-7)=-6(x+7) | | -2x^2+52x+240=0 | | 5m−m=8 | | -2-8r=-8-2r | | x-7+3=5 | | -3(23x+6)=-26 | | 3(2+8b)-5(-6b+7)=79 | | 6x-2+2x=-2+4x+8 | | 30+15x=165 | | 2/7y-5/61=1/6-5/7y= | | z5− -14= 18 | | 15(x-13)=495 | | −3(23x+6)=−26 | | 5x+2=127x= | | 15(x-13)=12 | | 2x-3=x+62 | | k-2/2=2 | | 53-2/3j=59 | | 2/7y-5/6=11/6-5/7y | | v+1/3=2 | | 2/7y-5/6=11/6-5/7y= | | h/3-15=-7 | | 9n−11=52 | | 2220=-5x | | 7-5g=-38 | | Y=3x-3x | | 3x+3=8x-2 | | 15+9s=42 | | y+5/2=3 |

Equations solver categories