(x2+5x)2-20(x2+5x)=-84

Simple and best practice solution for (x2+5x)2-20(x2+5x)=-84 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x2+5x)2-20(x2+5x)=-84 equation:



(x2+5x)2-20(x2+5x)=-84
We move all terms to the left:
(x2+5x)2-20(x2+5x)-(-84)=0
We add all the numbers together, and all the variables
(+x^2+5x)2-20(+x^2+5x)-(-84)=0
We add all the numbers together, and all the variables
(+x^2+5x)2-20(+x^2+5x)+84=0
We multiply parentheses
2x^2-20x^2+10x-100x+84=0
We add all the numbers together, and all the variables
-18x^2-90x+84=0
a = -18; b = -90; c = +84;
Δ = b2-4ac
Δ = -902-4·(-18)·84
Δ = 14148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14148}=\sqrt{36*393}=\sqrt{36}*\sqrt{393}=6\sqrt{393}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-6\sqrt{393}}{2*-18}=\frac{90-6\sqrt{393}}{-36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+6\sqrt{393}}{2*-18}=\frac{90+6\sqrt{393}}{-36} $

See similar equations:

| 12x-2x=8+2 | | 7w-3=-17 | | 4(-3x+3)=-24 | | 5b+4=20 | | 7(4x+9)=28x-8 | | 3(-4x+9)=-57 | | 11-3x=12-3x | | -(x-11)=30 | | 7(6x-6)=210 | | f(-3)=1/2-3+2 | | -7(6x-3)=-483 | | −k5−4=7 | | 5x-20=x-8 | | 6(4x+5)=-66 | | 3y-10=5y-10 | | 3x-5(x-3)=-4+5x+5 | | 9-4x-x=-36 | | -6(4x+5)=-66 | | 2x+1/2x-5/4=10 | | -6(4x+5)=-666 | | 5(k-24)=4-3k | | 215=17-x | | 3x+10=3x+7 | | 1/2x+2/3-1/3x+3/2=0 | | 3e=​4/3​​ | | 12y+6=–18 | | 5(7x-8)=-285 | | 1/11y+3=7 | | -4(6x-1)=-260 | | (k/3)+5=0 | | 24=2w+2*1/2 | | 10(1+3b)=−20 |

Equations solver categories