(x2-2x)2-8=7(x2+2x)

Simple and best practice solution for (x2-2x)2-8=7(x2+2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x2-2x)2-8=7(x2+2x) equation:



(x2-2x)2-8=7(x2+2x)
We move all terms to the left:
(x2-2x)2-8-(7(x2+2x))=0
We add all the numbers together, and all the variables
(+x^2-2x)2-(7(+x^2+2x))-8=0
We multiply parentheses
2x^2-(7(+x^2+2x))-4x-8=0
We calculate terms in parentheses: -(7(+x^2+2x)), so:
7(+x^2+2x)
We multiply parentheses
7x^2+14x
Back to the equation:
-(7x^2+14x)
We add all the numbers together, and all the variables
2x^2-4x-(7x^2+14x)-8=0
We get rid of parentheses
2x^2-7x^2-4x-14x-8=0
We add all the numbers together, and all the variables
-5x^2-18x-8=0
a = -5; b = -18; c = -8;
Δ = b2-4ac
Δ = -182-4·(-5)·(-8)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{41}}{2*-5}=\frac{18-2\sqrt{41}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{41}}{2*-5}=\frac{18+2\sqrt{41}}{-10} $

See similar equations:

| 7-7x=-8x+16 | | 7x+7=-8x-16 | | 5x-7=9=3x | | 12*11*x=2244 | | 3/4p-1/2p=10 | | 7(2x+5)=12x*5 | | -5-4x=4x+1 | | -5-4x=4+1 | | 3+4b=0 | | -1=5/2(2)+b | | (2x-5)/(3x+6)=0 | | 3x+26=5x+4 | | x+2/5x=210 | | 11w-13=9 | | 25x+100=5x | | x+(2x-5)=28 | | x+(2x+5)=28 | | 32+p=82 | | 3(3y+15)=78y= | | 3(3y+15)=78 | | y-7y=16 | | 8x+5=6x21 | | 3a(2a-6)=0 | | 4a-12=180 | | y+2/2=6 | | 4+x/5=16 | | 9/8y=-22 | | 11=(1/6)x | | 4a-1/a+4=2a-1/a+2+2/1 | | 5(b-1)=23 | | 5(b+1)=23 | | 8x-5=9(x=3) |

Equations solver categories