(x2-3)2-5(x2-3)+6=0

Simple and best practice solution for (x2-3)2-5(x2-3)+6=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x2-3)2-5(x2-3)+6=0 equation:



(x2-3)2-5(x2-3)+6=0
We add all the numbers together, and all the variables
(+x^2-3)2-5(+x^2-3)+6=0
We multiply parentheses
2x^2-5x^2-6+15+6=0
We add all the numbers together, and all the variables
-3x^2+15=0
a = -3; b = 0; c = +15;
Δ = b2-4ac
Δ = 02-4·(-3)·15
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*-3}=\frac{0-6\sqrt{5}}{-6} =-\frac{6\sqrt{5}}{-6} =-\frac{\sqrt{5}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*-3}=\frac{0+6\sqrt{5}}{-6} =\frac{6\sqrt{5}}{-6} =\frac{\sqrt{5}}{-1} $

See similar equations:

| 1-2j=7 | | 3/4x+8=25 | | 22x+2(3x+5=66 | | 8x-16=6x-4 | | 3b+12=7-2b | | 4x=-8(x+6) | | 2x+x+29=180 | | -6(4x-1)=-24+6 | | 104+w-45=180 | | r+29=91 | | 4m+-4=32 | | 10+8v=13v | | f(6)=2f(3) | | 34+7n=8(5n+4) | | 3b+b=3b+B-7+b+9 | | -34+7n=8(5n+4 | | 9m-27+3m=12m+43 | | 4(2n-3)+10=15-(2n3 | | 12m-27+3m=12m+43 | | 2x-20+x+5+2x+35=360 | | i÷-62=-20 | | 3x+22=10x-4 | | -2+4y=33y-3 | | 2=-9n+22=n | | 6m+3=8m | | 4x-7(x+3)=-36x3(x+2)=2(2x+7) | | 4x1=41 | | -18x+10=2(5-4x) | | 24-81=x | | 24+81=x | | 4+3i/6+5i=0 | | 2x-4-4x=-4 |

Equations solver categories