(x2-4x+3)2-4x2-9=16x

Simple and best practice solution for (x2-4x+3)2-4x2-9=16x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x2-4x+3)2-4x2-9=16x equation:



(x2-4x+3)2-4x^2-9=16x
We move all terms to the left:
(x2-4x+3)2-4x^2-9-(16x)=0
We add all the numbers together, and all the variables
-4x^2+(+x^2-4x+3)2-16x-9=0
We multiply parentheses
-4x^2+2x^2-8x-16x+6-9=0
We add all the numbers together, and all the variables
-2x^2-24x-3=0
a = -2; b = -24; c = -3;
Δ = b2-4ac
Δ = -242-4·(-2)·(-3)
Δ = 552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{552}=\sqrt{4*138}=\sqrt{4}*\sqrt{138}=2\sqrt{138}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{138}}{2*-2}=\frac{24-2\sqrt{138}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{138}}{2*-2}=\frac{24+2\sqrt{138}}{-4} $

See similar equations:

| 12r+16-20=3-5r | | 8/12+9m/12=23/12 | | 0.5(d+10)=17 | | (4m)/3=16 | | 1.5y/7=27 | | √8x-3=√5x+8 | | √8-3=√5x+8 | | -y+3=y-6 | | 4x²-200=0 | | 29m/10=39/10 | | (1/x)+(1/x+2)=28/95 | | 1/x+1/x+2=28/95 | | -46)+x+(x-35)+1/2x=360 | | 3t+7=14 | | 4t–3-(3t+1)=5t-4 | | {x}^{3}-{x}^{2}-8x+12=0 | | 3x+6=4+7 | | 1.x-4=13 | | -18-(-1k)=-13 | | 12x+12+13x+3=180 | | X2+8x=308 | | 8(m-2)=50 | | x²+12x−81=0 | | 126n-1=20 | | |4a+5|+3=2 | | -r=r/4 | | 19=3x^2+7 | | 1x+1=3x-8 | | x4-9x²+20=0 | | 20=0.6x-1 | | 3^(4x-34)=27 | | x²+6-78=0 |

Equations solver categories