(x=9)(6x-1)(8x+4)=0

Simple and best practice solution for (x=9)(6x-1)(8x+4)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x=9)(6x-1)(8x+4)=0 equation:



(x=9)(6x-1)(8x+4)=0
We move all terms to the left:
(x-(9)(6x-1)(8x+4))=0
We multiply parentheses ..
(x-9(+48x^2+24x-8x-4))=0
We calculate terms in parentheses: +(x-9(+48x^2+24x-8x-4)), so:
x-9(+48x^2+24x-8x-4)
determiningTheFunctionDomain -9(+48x^2+24x-8x-4)+x
We multiply parentheses
-432x^2-216x+72x+x+36
We add all the numbers together, and all the variables
-432x^2-143x+36
Back to the equation:
+(-432x^2-143x+36)
We get rid of parentheses
-432x^2-143x+36=0
a = -432; b = -143; c = +36;
Δ = b2-4ac
Δ = -1432-4·(-432)·36
Δ = 82657
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-143)-\sqrt{82657}}{2*-432}=\frac{143-\sqrt{82657}}{-864} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-143)+\sqrt{82657}}{2*-432}=\frac{143+\sqrt{82657}}{-864} $

See similar equations:

| 9y^2=-25+30y | | 8(k-5)=6k-1 | | (2x-1)=(8x-98)=(5x+11) | | (x-2)/2=8 | | 12/16=75/x | | (2x-1)=(8x-98)=(5x11) | | 4x-5(x+2)=6x+2-7x+10 | | (x-5)(2x=7)(3x-4)=0 | | 2(x-4)2=200 | | 184=113-y | | (6x-2)(x-1)=0 | | 37=2+5(g+8) | | -3x-(-4-2x)=-2(x-1) | | 70-x=83-2x | | 282=-x+51 | | 3y(3y-5)(2y=7)=0 | | v=12,403-12,403*0.09*1.75 | | 213-y=88 | | -5(3x-4)+4=144 | | v=12403-12403*0.009*1.75 | | A2-10a+21=0 | | 12b-18=10b+18 | | 6+2n=0 | | -22=-9(v-4) | | 1/3​(x+3)=-9 | | -63=-9n | | z(+6)(6z+1)=0 | | 2x+x+4x+2x+3x=360 | | 3x^2+7=14 | | (y-6)^3=-24 | | F(x)=7x5 | | 17+2(x+6)=5x-12 |

Equations solver categories