(y-3)(2y+1)=y(y+5)

Simple and best practice solution for (y-3)(2y+1)=y(y+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (y-3)(2y+1)=y(y+5) equation:



(y-3)(2y+1)=y(y+5)
We move all terms to the left:
(y-3)(2y+1)-(y(y+5))=0
We multiply parentheses ..
(+2y^2+y-6y-3)-(y(y+5))=0
We calculate terms in parentheses: -(y(y+5)), so:
y(y+5)
We multiply parentheses
y^2+5y
Back to the equation:
-(y^2+5y)
We get rid of parentheses
2y^2-y^2+y-6y-5y-3=0
We add all the numbers together, and all the variables
y^2-10y-3=0
a = 1; b = -10; c = -3;
Δ = b2-4ac
Δ = -102-4·1·(-3)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{7}}{2*1}=\frac{10-4\sqrt{7}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{7}}{2*1}=\frac{10+4\sqrt{7}}{2} $

See similar equations:

| 178=41-v | | -18z-0.7=-28+2.6 | | -4(2x+3)=5-(8x+1) | | x2+6x+4=36 | | 2x+6=5x-3(x-2 | | 2v/3=10 | | 7t+8=29 | | x4=4096,тоx= | | 3^x+1=9 | | 2−3x=11 | | -9y-6=-8y-9 | | 115x+460=50x+655 | | 2x+6=5x+3(x-2 | | 40-2n=-6(n-4) | | 44=2+7y | | 0=18+x | | 3x+30=x+24 | | -2k=-k+7 | | 45=2v+15 | | -33-5a=4(9a+6) | | 5z-1=-3z+4 | | X2+6=7x | | -32/5+b=81/5 | | (x+9)=7 | | 5/12d+1/6d+1/3d+1/12=6 | | -21x-24=30-3x | | -13=r-12 | | 2x+6=5x-3(2-x | | 6(d-5)=7(d+6)-d | | 8t-3=2t-15 | | 5(x–10)=35 | | -1=-11+b |

Equations solver categories