(z+40)(z-20)=90

Simple and best practice solution for (z+40)(z-20)=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (z+40)(z-20)=90 equation:



(z+40)(z-20)=90
We move all terms to the left:
(z+40)(z-20)-(90)=0
We multiply parentheses ..
(+z^2-20z+40z-800)-90=0
We get rid of parentheses
z^2-20z+40z-800-90=0
We add all the numbers together, and all the variables
z^2+20z-890=0
a = 1; b = 20; c = -890;
Δ = b2-4ac
Δ = 202-4·1·(-890)
Δ = 3960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3960}=\sqrt{36*110}=\sqrt{36}*\sqrt{110}=6\sqrt{110}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-6\sqrt{110}}{2*1}=\frac{-20-6\sqrt{110}}{2} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+6\sqrt{110}}{2*1}=\frac{-20+6\sqrt{110}}{2} $

See similar equations:

| 55h+4=190 | | 4/5x^251x=-2 | | -1/2x+11/12=1/2(3-x) | | (x-8)^2+2(x-8)+9=0 | | 180=77+(3x-1) | | 5^(-x+2)=58 | | -62÷-4=h | | 3/2y-6=-1/5y+1/5 | | 77+(3x-1)=180 | | 24=5(w+8)+3w | | 6x3+39x2+63x=0 | | x^2=15-3.5x | | (-3)(-12)(-4)=f | | 6x+1-3=5+4x-4 | | 6x+8=30-5x | | 3x-8+5=6x+2 | | 0.1x+1=0.2x+1 | | 4x+26+9x-115=107 | | 6x-1(x-8)=5x-3(2x+5) | | 37=2n | | 100=5n+0 | | 6-3n=24 | | 68=4n+8 | | c/3+8=9 | | -48+x=-8(7 | | 98=(1+(3/20))x | | 12x+5-11x=9 | | 2(0)+5y=3 | | 98=1+(3/20)x | | 6(2+×)=5x+15 | | 5(p+3)=88 | | 98=1+3/20x |

Equations solver categories