If it's not what You are looking for type in the equation solver your own equation and let us solve it.
+m2+6m+7=0
We add all the numbers together, and all the variables
m^2+6m+7=0
a = 1; b = 6; c = +7;
Δ = b2-4ac
Δ = 62-4·1·7
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{2}}{2*1}=\frac{-6-2\sqrt{2}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{2}}{2*1}=\frac{-6+2\sqrt{2}}{2} $
| -2x+4x=18 | | -3=3x+6(-x+4) | | 16x^2-8x+10=0 | | 3(x-20)=45 | | 7y+3=2y+38 | | 10x-4(x-6)=x+30 | | 3(x-20)=57 | | -3/2=-2/3y-5/7 | | 122+2x+3x+1=360 | | 2x/3+9=7 | | 9^2x-1=3^6x | | 8x+27=73 | | 3/4x+1.5=15 | | |x+1|=10 | | 22+15=d−17 | | 4x−5=2x+19 | | 180=7x-3(-6/15) | | 3x+6/9=9 | | 4(x+3)–2x+8=28 | | 5y-10-3=2y+20-y | | 1-7r-5r=-23 | | 28/42=x/54 | | 2x^2-16=04 | | -1/3x=2,5 | | 5/8x+5=10 | | 6x-2(-3x-6)=154 | | 15=3/5(6x+20) | | 6x-2(-3x-6)=254 | | 18x+(7x-13x)=120 | | 3x+45=2x+45 | | 16t^2-6t-130=0 | | 1x+7x=6 |