If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-(-8x+4)12x=-4(x-7)+6x
We move all terms to the left:
-(-8x+4)12x-(-4(x-7)+6x)=0
We multiply parentheses
96x^2-48x-(-4(x-7)+6x)=0
We calculate terms in parentheses: -(-4(x-7)+6x), so:We get rid of parentheses
-4(x-7)+6x
We add all the numbers together, and all the variables
6x-4(x-7)
We multiply parentheses
6x-4x+28
We add all the numbers together, and all the variables
2x+28
Back to the equation:
-(2x+28)
96x^2-48x-2x-28=0
We add all the numbers together, and all the variables
96x^2-50x-28=0
a = 96; b = -50; c = -28;
Δ = b2-4ac
Δ = -502-4·96·(-28)
Δ = 13252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13252}=\sqrt{4*3313}=\sqrt{4}*\sqrt{3313}=2\sqrt{3313}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{3313}}{2*96}=\frac{50-2\sqrt{3313}}{192} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{3313}}{2*96}=\frac{50+2\sqrt{3313}}{192} $
| 7(x+11)-11x=-1-(1+3x) | | 7/10*x=280 | | 4•8^x=11.48 | | 46+3x=22 | | x-9.1=9.4 | | (2x-10)=(2x+30) | | 4(5)^x=500 | | (2x+30)=(2x-10) | | 12+x-6=24+3 | | 10-2-x=22 | | 2(3x+5)=-(4x+10) | | 2(3x+5)=-(4x+) | | u/3+3.2=-4.3 | | X+35+(x-25)=180 | | 3(8x+2)-8x=10 | | 11/m+3=(5/2m)-(1/m-4) | | 4.8+10m=8.26 | | 7g-15=-30g+175 | | 0=4x^2-17x+18 | | 165-u=210 | | 17z+34=62+56 | | 16*2m=4 | | 7x^2-4=10 | | x/7-4=17 | | 4(x–6)=36 | | 3c-14=-3c | | 23/5x+13=39 | | 3(x+4)-10=4x-6-x | | 4.5=2x-2.5 | | -12x²+26x+10=-2(3x+1)(2x-5) | | -12x²+26x+10=-2(6x²-13x-5) | | 12n=8=3 |