-(1)/(4)d-(2)/(5)d=39

Simple and best practice solution for -(1)/(4)d-(2)/(5)d=39 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(1)/(4)d-(2)/(5)d=39 equation:



-(1)/(4)d-(2)/(5)d=39
We move all terms to the left:
-(1)/(4)d-(2)/(5)d-(39)=0
Domain of the equation: 4d!=0
d!=0/4
d!=0
d∈R
Domain of the equation: 5d!=0
d!=0/5
d!=0
d∈R
We calculate fractions
(-5d)/20d^2+(-8d)/20d^2-39=0
We multiply all the terms by the denominator
(-5d)+(-8d)-39*20d^2=0
Wy multiply elements
-780d^2+(-5d)+(-8d)=0
We get rid of parentheses
-780d^2-5d-8d=0
We add all the numbers together, and all the variables
-780d^2-13d=0
a = -780; b = -13; c = 0;
Δ = b2-4ac
Δ = -132-4·(-780)·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-13}{2*-780}=\frac{0}{-1560} =0 $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+13}{2*-780}=\frac{26}{-1560} =-1/60 $

See similar equations:

| 5x−5=25 | | 4+15/v=7 | | 70/u+1=8 | | 2-45/y=-7 | | -12/b-10=-6 | | -3-2+3x=7 | | 50/u-(-2)=7 | | 47=4+7t | | T=3c-4 | | 8(2x-10)+4=3268 | | 2=-7v+3(v+2) | | 13=(1/6)y+2 | | 13=(1/6)y | | X-x=216 | | 4^{2x+2}=8^{3x-2} | | 5/6=u+2 | | x+5=2x−3 | | 1/2x+3/6x=1+2/7x | | 8-8(6x+8)=-440 | | 68+(195-68)^.05x=120 | | z=409+223 | | b+6=-54 | | r=3,12-r | | 64n=16 | | 3k+5+3k=23 | | 4w^2+72=0 | | n-2n=-8 | | 12n+7=8n+13 | | 7-2x^2=47 | | 12n+7=8n+ | | 2m-7m=-15 | | 3x-6=5x-1 |

Equations solver categories