-(1/2)-(7/3)x=-(9/4)

Simple and best practice solution for -(1/2)-(7/3)x=-(9/4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(1/2)-(7/3)x=-(9/4) equation:



-(1/2)-(7/3)x=-(9/4)
We move all terms to the left:
-(1/2)-(7/3)x-(-(9/4))=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-(+7/3)x-(+1/2)-(-(+9/4))=0
We multiply parentheses
-7x^2-(+1/2)-(-(+9/4))=0
We get rid of parentheses
-7x^2-1/2-(-(+9/4))=0
We calculate fractions
-7x^2+()/()+()/()=0
We add all the numbers together, and all the variables
-7x^2+2=0
a = -7; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-7)·2
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*-7}=\frac{0-2\sqrt{14}}{-14} =-\frac{2\sqrt{14}}{-14} =-\frac{\sqrt{14}}{-7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*-7}=\frac{0+2\sqrt{14}}{-14} =\frac{2\sqrt{14}}{-14} =\frac{\sqrt{14}}{-7} $

See similar equations:

| 4/1/32+5x=268 | | 4x32+5x=268 | | 4x+7=4(x+3)- | | 81x/10=20 | | 7m-8m=12 | | r-3≤9;r=8= | | -9x-6=-5x+18 | | -(16/9)=8x | | 2e+45=15 | | x-6=0,5 | | -141/6=166/7z | | v/7+3=8 | | 4h-12;h=-5= | | 2/7+n=-20 | | 8x-1=125 | | -30=-3(w+8) | | -4(w-2)=2w-22 | | 55=r/8-(-46) | | R(10.5)=-10p^2+130p | | 9(t-84)=63 | | 8+11x-6=10+3x | | v/5+79=86 | | b/5+78=85 | | h=-16^2+173+66 | | 51=5p-49 | | 15=f/4+14 | | X^3-4x^2-7=0 | | 11=5(x)+36 | | t/2+13=16 | | 3w+30=6(w+4) | | (5t+3)2−33=−3(5t+3)2-33=-3 | | 4x^2+16x+12x=48 |

Equations solver categories