If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-(1/4)(12x+4)=x-9
We move all terms to the left:
-(1/4)(12x+4)-(x-9)=0
Domain of the equation: 4)(12x+4)!=0We add all the numbers together, and all the variables
x∈R
-(+1/4)(12x+4)-(x-9)=0
We get rid of parentheses
-(+1/4)(12x+4)-x+9=0
We multiply parentheses ..
-(+12x^2+1/4*4)-x+9=0
We multiply all the terms by the denominator
-(+12x^2+1-x*4*4)+9*4*4)=0
We add all the numbers together, and all the variables
-(+12x^2+1-x*4*4)=0
We get rid of parentheses
-12x^2+x*4*4-1=0
Wy multiply elements
-12x^2+16x*4-1=0
Wy multiply elements
-12x^2+64x-1=0
a = -12; b = 64; c = -1;
Δ = b2-4ac
Δ = 642-4·(-12)·(-1)
Δ = 4048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4048}=\sqrt{16*253}=\sqrt{16}*\sqrt{253}=4\sqrt{253}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-4\sqrt{253}}{2*-12}=\frac{-64-4\sqrt{253}}{-24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+4\sqrt{253}}{2*-12}=\frac{-64+4\sqrt{253}}{-24} $
| 1/3c+2=7 | | 3x-4(x+3)=-3 | | a/9-4=3 | | d^2-7d+12=2 | | 7(x-2)=3+8x-x-7 | | 6x-6(-3x+10)=-12 | | C=5w+8 | | 2x+x/2+90=180 | | 18/30=3/a | | 4x/2=32 | | 0/4=6x | | 3x-4(x+10)=4 | | 5x+7=134 | | -8+4+3x=2x+10+2x-6 | | 16=m/4-8 | | 12-1/5r=2r=+1 | | 23=3r | | 6x-3(-x+12)=9 | | 7q^2–6q–5=0 | | 47=3r-10 | | 3y-21=42 | | -10x-5=35 | | 3x^2=6=4 | | 2x+5=5(x+1)+-3x | | 275=j(25) | | 56=2a+20 | | 3^(x+5)=3.9^x | | 1x+17=5x-23 | | 4x/3+5/4=10x-2x/2 | | 6-x/4=3 | | 5.9-2x=7.1 | | 6=3-19x |