-(3/5)x+(3/5)=(18/10)

Simple and best practice solution for -(3/5)x+(3/5)=(18/10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(3/5)x+(3/5)=(18/10) equation:



-(3/5)x+(3/5)=(18/10)
We move all terms to the left:
-(3/5)x+(3/5)-((18/10))=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-(+3/5)x+(+3/5)-((+18/10))=0
We multiply parentheses
-3x^2+(+3/5)-((+18/10))=0
We get rid of parentheses
-3x^2+3/5-((+18/10))=0
We calculate fractions
-3x^2+()/()+()/()=0
We add all the numbers together, and all the variables
-3x^2+2=0
a = -3; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-3)·2
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*-3}=\frac{0-2\sqrt{6}}{-6} =-\frac{2\sqrt{6}}{-6} =-\frac{\sqrt{6}}{-3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*-3}=\frac{0+2\sqrt{6}}{-6} =\frac{2\sqrt{6}}{-6} =\frac{\sqrt{6}}{-3} $

See similar equations:

| -10-3x=-64 | | 12-x=6-8(x) | | (1/18)x^2+(1/2)x+1=0 | | 5+x/4=1+3/4x | | 12x-9-36x=15 | | 7(2x-3)+7=-2(-6x-20) | | 3x-10=7x-30 | | 2x2=-14 | | 14=5+x/3 | | 7-4x+3=x16-3x | | (2x+5)+65=180 | | -180=6j | | 2=36/2=g | | 2=1+a/20 | | 4x2=99 | | 6n+10=-50 | | 3=-0.1x^2+1.1x+2 | | 0.36=18/x | | 4(3x-7)=2(6x+5) | | a+2(A+6)=18 | | 2(6+6x)=72 | | -180=6k | | -7b+5=61 | | -5=-(-z+3) | | 38x+2/5=115 | | 8-x/4=44 | | y-28,y=46 | | -6=-1/w+1 | | 2x+3x+15=-45 | | n+6/3=12 | | 2(4)+4/3(3-1=b | | 3a+4a+9=17.5 |

Equations solver categories