If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-(3x-9)(-8x-4)+(3x-9)(9x+2)=-54
We move all terms to the left:
-(3x-9)(-8x-4)+(3x-9)(9x+2)-(-54)=0
We add all the numbers together, and all the variables
-(3x-9)(-8x-4)+(3x-9)(9x+2)+54=0
We multiply parentheses ..
-(-24x^2-12x+72x+36)+(3x-9)(9x+2)+54=0
We get rid of parentheses
24x^2+12x-72x+(3x-9)(9x+2)-36+54=0
We multiply parentheses ..
24x^2+(+27x^2+6x-81x-18)+12x-72x-36+54=0
We add all the numbers together, and all the variables
24x^2+(+27x^2+6x-81x-18)-60x+18=0
We get rid of parentheses
24x^2+27x^2+6x-81x-60x-18+18=0
We add all the numbers together, and all the variables
51x^2-135x=0
a = 51; b = -135; c = 0;
Δ = b2-4ac
Δ = -1352-4·51·0
Δ = 18225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{18225}=135$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-135)-135}{2*51}=\frac{0}{102} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-135)+135}{2*51}=\frac{270}{102} =2+11/17 $
| X/14+2/7=x-9/7 | | 51x^2-135x=0 | | X2-12x+30=42 | | X2-16x+86=23 | | x2+3x-6=4 | | 8^(x-1)^(x+6)=512 | | 2(x-5)^2=40 | | 1/3(x-2)^2=9 | | x^2+8x=3.5 | | -2/3y+5=4/5 | | 8n–7=100 | | n/7=3.4 | | x/1=0.9 | | (8n–7)=100 | | y+8y+16y=0 | | 14+5m=-3 | | –(q+14)=2q+1 | | Z^3-5z^2-z+26=0 | | x-9+2=7 | | 2(3x+4)+9=-13 | | x-3+4=5 | | 14+22=n^2 | | 3n^2-2n=21 | | x/2-9=5+4x | | (z-5)/(z-3)=z | | 16x+20=5x | | -x^2+4x=-5 | | 7y+22=11 | | 5(m-2)-3(2-m)=32. | | 4x=3+x^2 | | |11x–1|+12=7 | | 4w+8=6w(1w-1)-2w |