If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-(4/5)x-(13/5)=(-9)
We move all terms to the left:
-(4/5)x-(13/5)-((-9))=0
Domain of the equation: 5)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-(+4/5)x-(+13/5)-((-9))=0
We add all the numbers together, and all the variables
-(+4/5)x+9-(+13/5)=0
We multiply parentheses
-4x^2+9-(+13/5)=0
We get rid of parentheses
-4x^2+9-13/5=0
We multiply all the terms by the denominator
-4x^2*5-13+9*5=0
We add all the numbers together, and all the variables
-4x^2*5+32=0
Wy multiply elements
-20x^2+32=0
a = -20; b = 0; c = +32;
Δ = b2-4ac
Δ = 02-4·(-20)·32
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{10}}{2*-20}=\frac{0-16\sqrt{10}}{-40} =-\frac{16\sqrt{10}}{-40} =-\frac{2\sqrt{10}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{10}}{2*-20}=\frac{0+16\sqrt{10}}{-40} =\frac{16\sqrt{10}}{-40} =\frac{2\sqrt{10}}{-5} $
| 108=-12n-(-5n+7) | | 3b-9=b+7 | | 1/k+1=k+1/9 | | 4(7x-10)=72 | | 2x+18=14+4x-8= | | .5m=3.75 | | k^2+2k+1=9 | | 5y2-17y=-6 | | v=45-8v | | 25x-7(x=6)=12 | | 3(n-5)=27 | | x^2-30x-126=0 | | 2n(3+18-4)=40 | | 15-6(x-1)=12 | | 2x^2+16=-20 | | 0.08x=29 | | 30,000-8x=0 | | 0.8x=29 | | (24.2x)-6=66 | | (24.3x)-6=66 | | (24.5x)-6=66 | | 18–4x=27–7x | | (24.x)-6=66 | | 5x+307=1972 | | 6x-10+20+4x=180 | | 2(3y-2)-(3y+2)=0 | | 10/5z=-16 | | 17u=24 | | 7/10c+1/5c=2/7 | | 2/3w-6/5=-5/2 | | 5x+10(10-x)=70 | | 2/3x-2=3/4 |