-(5/4)x+(2/5)=-(13/30)

Simple and best practice solution for -(5/4)x+(2/5)=-(13/30) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(5/4)x+(2/5)=-(13/30) equation:



-(5/4)x+(2/5)=-(13/30)
We move all terms to the left:
-(5/4)x+(2/5)-(-(13/30))=0
Domain of the equation: 4)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-(+5/4)x+(+2/5)-(-(+13/30))=0
We multiply parentheses
-5x^2+(+2/5)-(-(+13/30))=0
We get rid of parentheses
-5x^2+2/5-(-(+13/30))=0
We calculate fractions
-5x^2+()/()+()/()=0
We add all the numbers together, and all the variables
-5x^2+2=0
a = -5; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-5)·2
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*-5}=\frac{0-2\sqrt{10}}{-10} =-\frac{2\sqrt{10}}{-10} =-\frac{\sqrt{10}}{-5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*-5}=\frac{0+2\sqrt{10}}{-10} =\frac{2\sqrt{10}}{-10} =\frac{\sqrt{10}}{-5} $

See similar equations:

| -7+5x=11-x | | 8x-6=57-x | | -b/5=-9 | | 5x=(3×4)2x | | 201-w=145 | | -u+170=11 | | 5.4-3c=9.3 | | 5^(3x-2)=125^(2x) | | v/3+7=-1 | | 4x(x-3)(2x+7)=0 | | 4-2=4-2x | | -21=7(y-1) | | 5v-5+4(2v+1)=-5(v+2) | | 7-3x=10-3x | | 4-5v=-6 | | 7-3x=10-3 | | -2/5+2/3x=-3/2 | | 1/2(5x-10)=4x-14 | | -29=4u-1 | | 1/2(5x-10)=4x-14) | | x^2+12x-156=0 | | -4(w+1)=36 | | 5=7-2v | | 6x+4+8x-2=44 | | 3x^2+13x-7=0 | | 2+2(7w-2)=-5(2w-2)+6w | | 3q^2-4q=2q^2-8q+21 | | 1x+20=4x+5 | | 2+2(7w-2)=-5(2w-2)+6 | | 7(6-4n)=-18+2n | | -2(-2w+4)-6w=4(w-4)-6 | | 1x+28=-3x+60 |

Equations solver categories