-(5/6)(9+2t)=40

Simple and best practice solution for -(5/6)(9+2t)=40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(5/6)(9+2t)=40 equation:



-(5/6)(9+2t)=40
We move all terms to the left:
-(5/6)(9+2t)-(40)=0
Domain of the equation: 6)(9+2t)!=0
t∈R
We add all the numbers together, and all the variables
-(+5/6)(2t+9)-40=0
We multiply parentheses ..
-(+10t^2+5/6*9)-40=0
We multiply all the terms by the denominator
-(+10t^2+5-40*6*9)=0
We get rid of parentheses
-10t^2-5+40*6*9=0
We add all the numbers together, and all the variables
-10t^2+2155=0
a = -10; b = 0; c = +2155;
Δ = b2-4ac
Δ = 02-4·(-10)·2155
Δ = 86200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{86200}=\sqrt{100*862}=\sqrt{100}*\sqrt{862}=10\sqrt{862}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{862}}{2*-10}=\frac{0-10\sqrt{862}}{-20} =-\frac{10\sqrt{862}}{-20} =-\frac{\sqrt{862}}{-2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{862}}{2*-10}=\frac{0+10\sqrt{862}}{-20} =\frac{10\sqrt{862}}{-20} =\frac{\sqrt{862}}{-2} $

See similar equations:

| 5-x/3=-157 | | 32.48=7g+3.64 | | 1=2(x-5)+3-x | | xx2x=32 | | y+2.4=9.33 | | 5.78=2.4^x | | 2.32(n+5)+1=19.56 | | 5x+8x-17=51-4x | | 1=2(x-4)+1-x | | 6(x-3)/3=2(x+7)/11 | | 2x2x=32 | | 3.5(b+2)=17.5 | | 2/5+t=2/3 | | 2n-3.50=3n-4.50 | | -7(h+-77)=-238 | | 40=x+6-(28) | | 425=5x-10 | | x+4-3=4-(x-1) | | {4x-2}+1=15 | | -18=2(x+6)-10, | | y-6-3y=0 | | (x+4)+1=2(x+4)+4 | | -380/h=-20 | | .6x-1=9-(1/6x) | | 4x+16-x=22=6 | | -28=868/y | | 2(d-29)=90 | | 10=x-(-7) | | 4=-12y+-16 | | -430=10(b-918)+-570 | | (2/3x)-1=9-(1/6x) | | 62-b=-13 |

Equations solver categories