If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-(5/8)x+(1/4)=(1/8)
We move all terms to the left:
-(5/8)x+(1/4)-((1/8))=0
Domain of the equation: 8)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-(+5/8)x+(+1/4)-((+1/8))=0
We multiply parentheses
-5x^2+(+1/4)-((+1/8))=0
We get rid of parentheses
-5x^2+1/4-((+1/8))=0
We calculate fractions
-5x^2+()/()+()/()=0
We add all the numbers together, and all the variables
-5x^2+2=0
a = -5; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-5)·2
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*-5}=\frac{0-2\sqrt{10}}{-10} =-\frac{2\sqrt{10}}{-10} =-\frac{\sqrt{10}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*-5}=\frac{0+2\sqrt{10}}{-10} =\frac{2\sqrt{10}}{-10} =\frac{\sqrt{10}}{-5} $
| 24+8t=96 | | 7.4x-2.6=27 | | 2x-1=84 | | h/3-7=1 | | x2+8x+81=0 | | -3(t-9)-(t+9)=9 | | 80=4(d+7) | | 2=n/8-4 | | -12-7a=-2 | | 2t-5=−10 | | -4w+-4=-24 | | 4=d-70/6 | | 3x+1/2=7-2x | | 4b+19=63 | | a+a+a=3 | | 4x-(2x+1)-1.3=-1.1x+0.4-2(4x-3) | | 11111111111111111111111111111111111111111111111111111111+a=2222222222222222222222222222222222222222222222222222222222222222 | | (7)e-4=30 | | 1+100+a-124361=92 | | 2p-14=4 | | 1/8n-5=3 | | (3/7)x=21 | | 9p−36=−18 | | x²+7x+12=0 | | 4v+3=3v+7 | | 5x3-6x2-10x-12=0 | | -4(2t+`1)=-52 | | 46+b=136 | | X÷4=10-6x | | 4y^2+4y=48 | | 4x+5/12+x-9/12=x+2/8 | | 8n(n=2) |