-(7/4u+12)+1=4/u+3

Simple and best practice solution for -(7/4u+12)+1=4/u+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(7/4u+12)+1=4/u+3 equation:



-(7/4u+12)+1=4/u+3
We move all terms to the left:
-(7/4u+12)+1-(4/u+3)=0
Domain of the equation: 4u+12)!=0
u∈R
Domain of the equation: u+3)!=0
u∈R
We get rid of parentheses
-7/4u-4/u-12-3+1=0
We calculate fractions
(-7u)/4u^2+(-16u)/4u^2-12-3+1=0
We add all the numbers together, and all the variables
(-7u)/4u^2+(-16u)/4u^2-14=0
We multiply all the terms by the denominator
(-7u)+(-16u)-14*4u^2=0
Wy multiply elements
-56u^2+(-7u)+(-16u)=0
We get rid of parentheses
-56u^2-7u-16u=0
We add all the numbers together, and all the variables
-56u^2-23u=0
a = -56; b = -23; c = 0;
Δ = b2-4ac
Δ = -232-4·(-56)·0
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{529}=23$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-23}{2*-56}=\frac{0}{-112} =0 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+23}{2*-56}=\frac{46}{-112} =-23/56 $

See similar equations:

| x-1-x-3=3000 | | 5x-25=x+25 | | 7=–r–3/2 | | 2a^2+3a=-5a^2 | | 0.25y-4=25.75 | | 0.4(15-2x)=0.2(3x-12 | | 26w-27=14w+21 | | 3(9+2g)=33 | | -20x+(4x-1)-2(3x-1+4)=28 | | 4x+2(x–3)=0. | | b/9-78=82 | | 98=35+3r | | 6x+8=−82 | | –5x=-6x+8 | | 98=35+-3r | | -2(x+3)=-2x+() | | 13-(2c+2)=2(c+2)+3+c | | 3-b=8 | | -4(2g+4)=48 | | 6x+7x-51=85-4x | | 25+2t=11 | | 6.3+v/7=-11.2 | | 13-(2c+2)=2(c+2+3c) | | d-53/9=3 | | 17n-10n+9n+19n=-18 | | −5x+12=−5x−12-5x+12 | | 7+x+2=18 | | u/3-2.1=-6.9 | | -47=v/5-53 | | 375=m+107 | | 4(6x+8)=24x+ | | k+2k-3k+k=12 |

Equations solver categories