-(7x-6)4x=-2(x+2)

Simple and best practice solution for -(7x-6)4x=-2(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(7x-6)4x=-2(x+2) equation:



-(7x-6)4x=-2(x+2)
We move all terms to the left:
-(7x-6)4x-(-2(x+2))=0
We multiply parentheses
-28x^2+24x-(-2(x+2))=0
We calculate terms in parentheses: -(-2(x+2)), so:
-2(x+2)
We multiply parentheses
-2x-4
Back to the equation:
-(-2x-4)
We get rid of parentheses
-28x^2+24x+2x+4=0
We add all the numbers together, and all the variables
-28x^2+26x+4=0
a = -28; b = 26; c = +4;
Δ = b2-4ac
Δ = 262-4·(-28)·4
Δ = 1124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1124}=\sqrt{4*281}=\sqrt{4}*\sqrt{281}=2\sqrt{281}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{281}}{2*-28}=\frac{-26-2\sqrt{281}}{-56} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{281}}{2*-28}=\frac{-26+2\sqrt{281}}{-56} $

See similar equations:

| -7(x-5)=21 | | y/5-3=17 | | (3y-7)+3y=9 | | 5(4w+5)/2=8 | | 4(2+r)=12 | | 2×-4÷5=x+4 | | 3(m-6)-8(5-3m)=77 | | x/4+8=88 | | 2x-5.45=-5.13 | | 4(x-8)+1=3x-2 | | 35a+10=() | | 2(-6-7b)+2(1-3b)=50 | | 12x+7=-1+14x | | 5=5x=17+x | | 263=-7-6(6x+3) | | H+2f=$5 | | 24m=22=-4(1-6m) | | 9x-3x+99=9x+57 | | 4x+2=11÷x | | 6(x-7)+21=6x-21 | | -5+7(4n+8)=191 | | 13y+8=9y+24 | | 6(1+4x)=-18 | | 15=3(12-x) | | (x-3)/22=-1 | | (2z)^0=5 | | -29=-15+x | | 10(2)+b(2)=15(2) | | (2z)^0=0 | | 7d+6=48 | | 5x-2(3-4x)=6x-5 | | -26+4=-52+18x |

Equations solver categories