-(x-1)+5=2(x+3)3x

Simple and best practice solution for -(x-1)+5=2(x+3)3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(x-1)+5=2(x+3)3x equation:



-(x-1)+5=2(x+3)3x
We move all terms to the left:
-(x-1)+5-(2(x+3)3x)=0
We get rid of parentheses
-x-(2(x+3)3x)+1+5=0
We calculate terms in parentheses: -(2(x+3)3x), so:
2(x+3)3x
We multiply parentheses
6x^2+18x
Back to the equation:
-(6x^2+18x)
We add all the numbers together, and all the variables
-1x-(6x^2+18x)+6=0
We get rid of parentheses
-6x^2-1x-18x+6=0
We add all the numbers together, and all the variables
-6x^2-19x+6=0
a = -6; b = -19; c = +6;
Δ = b2-4ac
Δ = -192-4·(-6)·6
Δ = 505
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{505}}{2*-6}=\frac{19-\sqrt{505}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{505}}{2*-6}=\frac{19+\sqrt{505}}{-12} $

See similar equations:

| 8a=-5a+9 | | −4x+3=5 | | 11y+7=17y-2 | | (3k-6)/3=5 | | m(A)=60 | | n=20+50 | | −25x+11=6 | | 88x+3=11 | | 78x+8=14 | | X+.1x=159 | | -3x*(5+−3x)=-51 | | 180=1/2x+x | | 21x+9=12 | | V=2t^2+4t-2 | | 8-(5-6n)-3=97 | | 216/5+3c=1716/5-21 | | 6(m+3)=18 | | 1x=1x=1 | | |H-5|=3h-7 | | 2x+12=4x+9 | | -45k=-45+-5k | | 6x+7=19+2x | | x=9+9+(0,5x) | | 8+14y=0 | | 2(3n-4)=1/2(0-n) | | -8=x+11|2 | | 2x=18+9+x | | 7x+16+2x=4x-30 | | 9-8y=18 | | (2x-2)^2=9x | | 0.31=1-x/1+x | | b^2+18b-819=0 |

Equations solver categories