-.333333333x+34=5/6x+13

Simple and best practice solution for -.333333333x+34=5/6x+13 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -.333333333x+34=5/6x+13 equation:



-.333333333x+34=5/6x+13
We move all terms to the left:
-.333333333x+34-(5/6x+13)=0
Domain of the equation: 6x+13)!=0
x∈R
We add all the numbers together, and all the variables
-0.333333333x-(5/6x+13)+34=0
We get rid of parentheses
-0.333333333x-5/6x-13+34=0
We multiply all the terms by the denominator
-(0.333333333x)*6x-13*6x+34*6x-5=0
We add all the numbers together, and all the variables
-(+0.333333333x)*6x-13*6x+34*6x-5=0
We multiply parentheses
-0x^2-13*6x+34*6x-5=0
Wy multiply elements
-0x^2-78x+204x-5=0
We add all the numbers together, and all the variables
-1x^2+126x-5=0
a = -1; b = 126; c = -5;
Δ = b2-4ac
Δ = 1262-4·(-1)·(-5)
Δ = 15856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15856}=\sqrt{16*991}=\sqrt{16}*\sqrt{991}=4\sqrt{991}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(126)-4\sqrt{991}}{2*-1}=\frac{-126-4\sqrt{991}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(126)+4\sqrt{991}}{2*-1}=\frac{-126+4\sqrt{991}}{-2} $

See similar equations:

| 7=x-(-27) | | 30=m-64 | | k+51=47 | | 4/5/3=c/10 | | s-1.50=4.00 | | -135=p-47 | | 2v-18=v+6 | | 11k−5k=18 | | a-(-73)=120 | | 6w+13=8w-7 | | 7x+(x+20)=18 | | -48=x-(-52) | | 3b-18=b+18 | | 2(x-1)=3(×+3) | | 3(y+2)+2(y-3)=(-15) | | G(x)=-3(x+1)^2+6 | | n+(-52)=-81 | | 10x+3=11x-3 | | 15.4+x=21.1 | | 5b+13=18 | | -3(y+6)+7y=10 | | r-59=-98 | | 10u-16=8u | | n+78=118 | | x/(-7/5)=10/19 | | -0.5(2/3-3/4)-3.5x=-83/12 | | 135=37+x | | 40=8u-3u | | n+97=177 | | 3(4x+4)=2(4x+8) | | 3(4x+4)=1/2(x+2) | | 3m=2m+6 |

Equations solver categories