-1+6k-((k-3)*(5k+3))=0

Simple and best practice solution for -1+6k-((k-3)*(5k+3))=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1+6k-((k-3)*(5k+3))=0 equation:



-1+6k-((k-3)(5k+3))=0
We multiply parentheses ..
-((+5k^2+3k-15k-9))+6k-1=0
We calculate terms in parentheses: -((+5k^2+3k-15k-9)), so:
(+5k^2+3k-15k-9)
We get rid of parentheses
5k^2+3k-15k-9
We add all the numbers together, and all the variables
5k^2-12k-9
Back to the equation:
-(5k^2-12k-9)
We add all the numbers together, and all the variables
6k-(5k^2-12k-9)-1=0
We get rid of parentheses
-5k^2+6k+12k+9-1=0
We add all the numbers together, and all the variables
-5k^2+18k+8=0
a = -5; b = 18; c = +8;
Δ = b2-4ac
Δ = 182-4·(-5)·8
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{484}=22$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-22}{2*-5}=\frac{-40}{-10} =+4 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+22}{2*-5}=\frac{4}{-10} =-2/5 $

See similar equations:

| 26=-2w+8(w+4) | | u/4+8=10 | | (3*4.50)+4.50x=24.75 | | 4(h-2)=-3(h+7) | | 7+2x/3=6 | | 76-9874+973-3=x | | 10(x+3)/14=x | | 4(h-2)=-3(h+7 | | 125=5x+100 | | (s+2)*(s+3)=0 | | u/4+9=31 | | 6x-4=3x+53 | | 0.6+x=0.24 | | 5x+3=x+47 | | -b-36=-7-2(1+5b) | | -2(1+8x)=-130 | | -3x-13=1-5x | | x+(2/3x)=90 | | X3+2x+35=0 | | 3(u-9)=-3u-15 | | 3x+10+9x-9+3x−16=180 | | (3/12)x+2=11 | | 1+3d≥=10 | | -12x+24=8x-46 | | .3x+9-0.15x=12 | | 3(c-9)=9 | | 12b-12=6b-24 | | 1+3d=≥10 | | 2x+4x=3x=1 | | 7-(1/9)k=32 | | 11+x=20–2x | | 2+2a=6 |

Equations solver categories