If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1/2(-12x+576)=6/5(25x+50)
We move all terms to the left:
-1/2(-12x+576)-(6/5(25x+50))=0
Domain of the equation: 2(-12x+576)!=0
x∈R
Domain of the equation: 5(25x+50))!=0We calculate fractions
x∈R
(-5x2/(2(-12x+576)*5(25x+50)))+(-12x0/(2(-12x+576)*5(25x+50)))=0
We calculate terms in parentheses: +(-5x2/(2(-12x+576)*5(25x+50))), so:
-5x2/(2(-12x+576)*5(25x+50))
We multiply all the terms by the denominator
-5x2
We add all the numbers together, and all the variables
-5x^2
Back to the equation:
+(-5x^2)
We calculate terms in parentheses: +(-12x0/(2(-12x+576)*5(25x+50))), so:We get rid of parentheses
-12x0/(2(-12x+576)*5(25x+50))
We multiply all the terms by the denominator
-12x0
We add all the numbers together, and all the variables
-12x
Back to the equation:
+(-12x)
-5x^2-12x=0
a = -5; b = -12; c = 0;
Δ = b2-4ac
Δ = -122-4·(-5)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12}{2*-5}=\frac{0}{-10} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12}{2*-5}=\frac{24}{-10} =-2+2/5 $
| 7y-4=3y-5+59 | | 515x-7500-x^2=0 | | -(x-1)=-32 | | b+0.25=0.5b-0.75 | | 1.3x+0.16=0.9-0.2 | | 3(3+2u)= | | −2x−7=−11 | | 1.6x+x=6 | | 4/5=x/365 | | 12(3x-1)^3=0 | | 10-x=32- | | 224/4=490x | | 5+5t=-10+2t | | 11x-5(2x-1)=3(6-x)3 | | 2(b+7)-7=1 | | 10000x^2+4002x+0.8=0 | | 3x+4+x+3=3 | | 25x+18=58 | | 2x-22=14–4x* | | 13x+2=6x+31 | | C^2-9=8c | | 4a+18=20 | | 8+5=3x+13/2 | | 2(y+1)+3=9 | | 38=26+2(x+5)* | | 7500+30x+x^2=0 | | C2-9=8c | | 6k-42=7 | | R=30a-30 | | 3=2.7x=9.6=3.2x | | 3=|2k=7| | | -13x^2+1170x-10400=0 |