If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1/2(20x-12)=-1/5(-10x+35)
We move all terms to the left:
-1/2(20x-12)-(-1/5(-10x+35))=0
Domain of the equation: 2(20x-12)!=0
x∈R
Domain of the equation: 5(-10x+35))!=0We calculate fractions
x∈R
(-5x(-)/(2(20x-12)*5(-10x+35)))+(-(-2x2)/(2(20x-12)*5(-10x+35)))=0
We calculate terms in parentheses: +(-5x(-)/(2(20x-12)*5(-10x+35))), so:
-5x(-)/(2(20x-12)*5(-10x+35))
We add all the numbers together, and all the variables
-5x0/(2(20x-12)*5(-10x+35))
We multiply all the terms by the denominator
-5x0
We add all the numbers together, and all the variables
-5x
Back to the equation:
+(-5x)
We calculate terms in parentheses: +(-(-2x2)/(2(20x-12)*5(-10x+35))), so:determiningTheFunctionDomain 2x^2+(-5x)=0
-(-2x2)/(2(20x-12)*5(-10x+35))
We add all the numbers together, and all the variables
-(-2x^2)/(2(20x-12)*5(-10x+35))
We multiply all the terms by the denominator
-(-2x^2)
We get rid of parentheses
2x^2
Back to the equation:
+(2x^2)
We get rid of parentheses
2x^2-5x=0
a = 2; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·2·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*2}=\frac{0}{4} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*2}=\frac{10}{4} =2+1/2 $
| 6=-5w+16 | | 1/3x+1=-3x+11 | | 1/12+1/16+1/c=1/4 | | 64-4t=55 | | 13+(27+g)=(13+27)+3 | | 17m=19m-6 | | (w/5)+1=2 | | 1/3x-12=-36 | | -4(8t+72)+46=3t | | 1=21/5-2/5x | | 2x-x-12=6 | | 1/3(8x-10)=-4x-32 | | 39.99x+.45=44.99x+.40 | | 1/3(x-10)=-4x-32 | | 2d^2+7d+6=0 | | n-4= -3 | | 1.80-0.02x=1.34 | | g/8+82=89 | | 7-4c=3c=35 | | 7y+25+3y=10y+10 | | 60=r/6+54 | | 217.5m+200=4200 | | 7/15+1/5h=1/3 | | 3(2y+7)=12(y-4) | | 3h+h-8=4 | | 1/16+1/12+1/c=1/4 | | z/5-3=2 | | 3p-6-2p=-8 | | 54-s=5 | | 12=10k | | 2(p-8)=-8+3p | | 3(w+2)=4(w+3) |