If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1/2*12v-20+4=-12-8v
We move all terms to the left:
-1/2*12v-20+4-(-12-8v)=0
Domain of the equation: 2*12v!=0We add all the numbers together, and all the variables
v!=0/1
v!=0
v∈R
-1/2*12v-(-8v-12)-20+4=0
We add all the numbers together, and all the variables
-1/2*12v-(-8v-12)-16=0
We get rid of parentheses
-1/2*12v+8v+12-16=0
We multiply all the terms by the denominator
8v*2*12v+12*2*12v-16*2*12v-1=0
Wy multiply elements
192v^2*1+288v*1-384v*1-1=0
Wy multiply elements
192v^2+288v-384v-1=0
We add all the numbers together, and all the variables
192v^2-96v-1=0
a = 192; b = -96; c = -1;
Δ = b2-4ac
Δ = -962-4·192·(-1)
Δ = 9984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9984}=\sqrt{256*39}=\sqrt{256}*\sqrt{39}=16\sqrt{39}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-16\sqrt{39}}{2*192}=\frac{96-16\sqrt{39}}{384} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+16\sqrt{39}}{2*192}=\frac{96+16\sqrt{39}}{384} $
| 5y+40+1+1=0 | | -1/2*(12v-20)+4=-12-8v | | 1-4w=-31 | | 4x+3=2(2x-6) | | -1/2(12v-20+4=-12-8v) | | 6z+4-3z=37 | | d/6=-9.5 | | d/2-4=-5 | | n+511/2=10 | | n/3+21=25 | | 150-7.5x=120.50 | | x(5−2)=4x−x | | 9f-23=49 | | 7=c+2 | | −8+x=48 | | p-92=6 | | 5x+3=-3x+17 | | /4x+1=13 | | 5b-3=3-b | | (3x-4)=(2x+10) | | H(t)=-16^2+80t+3 | | 10.5x=26 | | 16n+–15n=8 | | 101/2x=26 | | 9x-4=-59 | | 7m-3m=40,m= | | 16-4m=+6 | | {X+y)^2=289.X^2+y^2=169 | | 10x-3(2x-4=8 | | 56/m=-3.5 | | 4.5(w)=30 | | 6y+3=4y+6 |