-1/2k+10=-10+4/5k

Simple and best practice solution for -1/2k+10=-10+4/5k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/2k+10=-10+4/5k equation:



-1/2k+10=-10+4/5k
We move all terms to the left:
-1/2k+10-(-10+4/5k)=0
Domain of the equation: 2k!=0
k!=0/2
k!=0
k∈R
Domain of the equation: 5k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
-1/2k-(4/5k-10)+10=0
We get rid of parentheses
-1/2k-4/5k+10+10=0
We calculate fractions
(-5k)/10k^2+(-8k)/10k^2+10+10=0
We add all the numbers together, and all the variables
(-5k)/10k^2+(-8k)/10k^2+20=0
We multiply all the terms by the denominator
(-5k)+(-8k)+20*10k^2=0
Wy multiply elements
200k^2+(-5k)+(-8k)=0
We get rid of parentheses
200k^2-5k-8k=0
We add all the numbers together, and all the variables
200k^2-13k=0
a = 200; b = -13; c = 0;
Δ = b2-4ac
Δ = -132-4·200·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-13}{2*200}=\frac{0}{400} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+13}{2*200}=\frac{26}{400} =13/200 $

See similar equations:

| 3(2x-4)+2(-3+5)=-4x-10 | | 8=-2/6x | | -2|m|=-10 | | 0.4c=-14 | | -18=w-14 | | 50=23+9m | | 6|4x+2|+3=39 | | -2.3x2+9x-63=0 | | 6|4x+2|+3=49 | | m/8+31=36 | | (x=8)/5=3 | | -2(x+6)+10=18 | | 7(r-85)=84 | | 5/8y=1/10 | | (4=3x)/2=5 | | 0=3w | | 2x+4x+9=3(x+3) | | 2(1-x)+6x=-3(x+4) | | 1/2x-3=4+2/3 | | t-33=6 | | -4v-2=50 | | 1464=3/4s | | (3x=6)/3=6 | | 6(3x+4)=3(4x+10) | | 5/8y=10/11 | | x-3/3=x+7 | | (4x)/8+2=5 | | g+5-8=7 | | -2(3x+1)=(x+8)5 | | p+19=652 | | 4(w-6)=+1) | | 1c-20=4-3c |

Equations solver categories