-1/2w+3=-1/3w+7

Simple and best practice solution for -1/2w+3=-1/3w+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/2w+3=-1/3w+7 equation:



-1/2w+3=-1/3w+7
We move all terms to the left:
-1/2w+3-(-1/3w+7)=0
Domain of the equation: 2w!=0
w!=0/2
w!=0
w∈R
Domain of the equation: 3w+7)!=0
w∈R
We get rid of parentheses
-1/2w+1/3w-7+3=0
We calculate fractions
(-3w)/6w^2+2w/6w^2-7+3=0
We add all the numbers together, and all the variables
(-3w)/6w^2+2w/6w^2-4=0
We multiply all the terms by the denominator
(-3w)+2w-4*6w^2=0
We add all the numbers together, and all the variables
2w+(-3w)-4*6w^2=0
Wy multiply elements
-24w^2+2w+(-3w)=0
We get rid of parentheses
-24w^2+2w-3w=0
We add all the numbers together, and all the variables
-24w^2-1w=0
a = -24; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·(-24)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*-24}=\frac{0}{-48} =0 $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*-24}=\frac{2}{-48} =-1/24 $

See similar equations:

| -3(3x-3)=-99 | | 7(x2-8)=-70 | | x(4x+15)+4=0 | | 1/2x=1/14+6/7 | | 5x-8=8x-3 | | 6(3x+4)=-102 | | 3-1x=14 | | 21+8s=50-11s | | 5(5-7)=2(n+14) | | 2(3n+5)=25 | | x+3-(x-1)=x-2-(-x) | | -3x+4=-0.5x+4 | | X+109+x+89=360 | | 5(2x-3)-(4x-9)=0 | | 0.5x+23.5=38.5 | | -3x+4=-1/2x+4 | | 13x-6=11x+12 | | 7(2x-8)=-70 | | 9(2x+5)+5=6+3x | | -x-3-3=-x-2-4 | | -135=-8(p+8)-7 | | 5n=3n-n+5=26 | | 1x-20+137=180 | | 3x+8+3x=5=(x+3)-7 | | 14.6-x÷2.8=7.1 | | -259=5+6(-8-6n) | | 2(6-7m)+2=-98 | | -3(4-x)+2(x+5)=9x+22 | | -3(8m-7)+8=125 | | 9x+4=113 | | -8(2m-8)+4=180 | | 5x(x+1)+6=0 |

Equations solver categories