-1/2x+10=-1/4x+54

Simple and best practice solution for -1/2x+10=-1/4x+54 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/2x+10=-1/4x+54 equation:



-1/2x+10=-1/4x+54
We move all terms to the left:
-1/2x+10-(-1/4x+54)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 4x+54)!=0
x∈R
We get rid of parentheses
-1/2x+1/4x-54+10=0
We calculate fractions
(-4x)/8x^2+2x/8x^2-54+10=0
We add all the numbers together, and all the variables
(-4x)/8x^2+2x/8x^2-44=0
We multiply all the terms by the denominator
(-4x)+2x-44*8x^2=0
We add all the numbers together, and all the variables
2x+(-4x)-44*8x^2=0
Wy multiply elements
-352x^2+2x+(-4x)=0
We get rid of parentheses
-352x^2+2x-4x=0
We add all the numbers together, and all the variables
-352x^2-2x=0
a = -352; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·(-352)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*-352}=\frac{0}{-704} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*-352}=\frac{4}{-704} =-1/176 $

See similar equations:

| -4(3r-5)=39+7r | | 2(3x-2)-5(3x+2)=35 | | 4/5u-1/5=-1/3u-2 | | 4/x=12/21 | | 4x+6+102+x=180 | | -14-42=7a | | r2− 1=1 | | 8x-20=153 | | 4(2x-4)+(5x+2)=24 | | -6(5+5x)=-30-6x | | 2(3x-1)-2=6x-4 | | 2/3x+x=-1/3x+14 | | -4(2-5n)=4n+40 | | x^2-8x=50 | | 9x^2-124=0 | | x/4+6+2x/8=36 | | -2n-2+4n=6n-2 | | 4=-2c(-3) | | 7x-3+5=9x+12 | | 5y-13=32y= | | 7+2x÷=5 | | z+0=35 | | 4(6x-1)+x=5(5x-1 | | -6x-(-7x-21)=19 | | 3r^+8r-3=0 | | 11+10(p+10)=4−5(2p+11) | | 3/4+r=2/3 | | -5.6=y+3.9 | | 14+12u=-16+-9u | | 7(m-3)=7m | | 31/2+v=51/10 | | 4x-15=7x+9 |

Equations solver categories