If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1/3(27x-15)=1/2(10-18x)
We move all terms to the left:
-1/3(27x-15)-(1/2(10-18x))=0
Domain of the equation: 3(27x-15)!=0
x∈R
Domain of the equation: 2(10-18x))!=0We add all the numbers together, and all the variables
x∈R
-1/3(27x-15)-(1/2(-18x+10))=0
We calculate fractions
(-2x(-)/(3(27x-15)*2(-18x+10)))+(-3x2/(3(27x-15)*2(-18x+10)))=0
We calculate terms in parentheses: +(-2x(-)/(3(27x-15)*2(-18x+10))), so:
-2x(-)/(3(27x-15)*2(-18x+10))
We add all the numbers together, and all the variables
-2x0/(3(27x-15)*2(-18x+10))
We multiply all the terms by the denominator
-2x0
We add all the numbers together, and all the variables
-2x
Back to the equation:
+(-2x)
We calculate terms in parentheses: +(-3x2/(3(27x-15)*2(-18x+10))), so:We get rid of parentheses
-3x2/(3(27x-15)*2(-18x+10))
We multiply all the terms by the denominator
-3x2
We add all the numbers together, and all the variables
-3x^2
Back to the equation:
+(-3x^2)
-3x^2-2x=0
a = -3; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·(-3)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*-3}=\frac{0}{-6} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*-3}=\frac{4}{-6} =-2/3 $
| –2p+1=1 | | -x-17=44 | | 14x-2x-3=3(5x-9) | | -16=-12z-100 | | 14x-2x-3=3(5x+9) | | 8/x= | | -6/7=-6x | | 96=(5+x)/(x-3) | | 230=50+(25+6)w | | 2(3q-2)=16q | | 2u^2=u+1 | | (2x-7)+4x+3)=112 | | -1=-7v+3(v-7) | | y+(y+14)=32-4y | | y=-5/3(8)+3 | | -7-4(1-7k=39+3k=2 | | 3(2x-2)+4=34 | | x(x+2)-20=40 | | V/10+1=v/4-2 | | 2/12=5/m | | 2(x+3)-7=39+7x | | 2/12=5/k | | 3(2a+3)-4(3a-6)=21 | | n3=18 | | 32+3(z+4)=41 | | 3(2)^2+b(2)-5=0 | | 30=6y-72 | | 6(x+1)=2(x+4) | | V=4x2x5 | | 2+3x=5-10x | | -4(6q–3)–15=15q–3 | | 2b+7=44 |