-1/3+2(1/2)p=3

Simple and best practice solution for -1/3+2(1/2)p=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/3+2(1/2)p=3 equation:



-1/3+2(1/2)p=3
We move all terms to the left:
-1/3+2(1/2)p-(3)=0
Domain of the equation: 2)p!=0
p!=0/1
p!=0
p∈R
determiningTheFunctionDomain 2(1/2)p-3-1/3=0
We add all the numbers together, and all the variables
2(+1/2)p-3-1/3=0
We multiply parentheses
2p^2-3-1/3=0
We multiply all the terms by the denominator
2p^2*3-1-3*3=0
We add all the numbers together, and all the variables
2p^2*3-10=0
Wy multiply elements
6p^2-10=0
a = 6; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·6·(-10)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{15}}{2*6}=\frac{0-4\sqrt{15}}{12} =-\frac{4\sqrt{15}}{12} =-\frac{\sqrt{15}}{3} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{15}}{2*6}=\frac{0+4\sqrt{15}}{12} =\frac{4\sqrt{15}}{12} =\frac{\sqrt{15}}{3} $

See similar equations:

| -1/3+21/2p=3 | | -207=2x+7(-5x-6) | | -9p+9-4-2p=12p+9-6 | | w+1.5=0.625 | | 174=-3(3x-18) | | 2x15=-22 | | 10x+5=30x-10 | | 4x-1-5x=5-(x-4) | | 4=25-7x | | 2-5(2-q)=7 | | -3x+5(-5x+8)=-240 | | 12x=-42 | | —22.8=6n | | 7+x/6=19 | | 5-4i÷8+7i=0 | | X/4-x/14=5/4 | | 13=5+x/9 | | 9n-4=-8 | | 7/10m=19 | | 5-3x=1.67x+7 | | -21-(-48)=4/x | | 1/1/2h=4 | | U/3=u/5+4 | | 32.50+35.25x=103 | | -2(7+2y)+3y=14 | | x/2+17=15 | | 5n–4=8 | | 22.50+29.50x=111 | | 5-4x+4=-11 | | 3x^2-4=16 | | ​55/p​​=​​22/8​​ | | y=(-1+4)(-1+2) |

Equations solver categories