-1/3x+12=-x+8

Simple and best practice solution for -1/3x+12=-x+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/3x+12=-x+8 equation:



-1/3x+12=-x+8
We move all terms to the left:
-1/3x+12-(-x+8)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
-1/3x-(-1x+8)+12=0
We get rid of parentheses
-1/3x+1x-8+12=0
We multiply all the terms by the denominator
1x*3x-8*3x+12*3x-1=0
Wy multiply elements
3x^2-24x+36x-1=0
We add all the numbers together, and all the variables
3x^2+12x-1=0
a = 3; b = 12; c = -1;
Δ = b2-4ac
Δ = 122-4·3·(-1)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{39}}{2*3}=\frac{-12-2\sqrt{39}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{39}}{2*3}=\frac{-12+2\sqrt{39}}{6} $

See similar equations:

| 5(w+5)=9w+1 | | x-4=-28-5x | | x/14=15/21 | | 5/4x+0.25=1/4x-1.5 | | -26=-6v+4(v-4) | | 2=-6w+4(w+5) | | x/40=7/5 | | -8x-3=8x+19 | | 3x+30=8x+7 | | -18=11y+y | | 64+27=97+x=180 | | 6w+24=9w | | 6+5w=-9 | | -1.3x=2(x+2.18) | | x+68+x=818 | | 12=2y+6 | | 4.8(x-2)=-0,2x+15.4 | | 3(u+5)-8u=5 | | 2x/3-2=3 | | -7t=3t+20 | | -8+w/5=-13 | | 9-6(1-7n)=26 | | 2(u+4)-4u=2 | | 2(-4x+3)-3x+4=-174 | | (2t^2+t)^2-4(2t^2+t)+3=0 | | 3(2n+4)-5(3-2n)=7-2n | | 0.3(10x+12)=4.1(0.2x+5) | | 12^4x-5=53 | | 49=(7+7+7+7+7+7+7+7+7+7)-(7x) | | 21=y/5+6 | | (6)(1/4x)(9)=9 | | 4(2.5+6)-2c=-9 |

Equations solver categories