-1/4x+5=-2/5x+1

Simple and best practice solution for -1/4x+5=-2/5x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/4x+5=-2/5x+1 equation:



-1/4x+5=-2/5x+1
We move all terms to the left:
-1/4x+5-(-2/5x+1)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 5x+1)!=0
x∈R
We get rid of parentheses
-1/4x+2/5x-1+5=0
We calculate fractions
(-5x)/20x^2+8x/20x^2-1+5=0
We add all the numbers together, and all the variables
(-5x)/20x^2+8x/20x^2+4=0
We multiply all the terms by the denominator
(-5x)+8x+4*20x^2=0
We add all the numbers together, and all the variables
8x+(-5x)+4*20x^2=0
Wy multiply elements
80x^2+8x+(-5x)=0
We get rid of parentheses
80x^2+8x-5x=0
We add all the numbers together, and all the variables
80x^2+3x=0
a = 80; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·80·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*80}=\frac{-6}{160} =-3/80 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*80}=\frac{0}{160} =0 $

See similar equations:

| 2.1x+1/2x=3.2-8.4x | | 160+11x=1120-5x | | 36/6=x/18 | | -12x-32=64 | | 4x=8x=2 | | 3+9(x-3)=9-4(x-2) | | 9x^2+74=54x | | 9x-3=-8+6x | | 12a^2-5a-15=5a^2 | | 6p-15=8p+3 | | 1/4(8x+16)+4x=0 | | 3X^2+x^2=152^2 | | S(t)=t^2+3 | | (1/5)y-2=(1/4) | | S(t)=t^2+3/4t | | 0.3n-1.5=0.4-0.2n | | 3=3x-7 | | 9^3x+4=234x+2 | | 0.3(n-5)=0.4-0.2 | | 7x-5x=(-9)-(+9) | | 15x-14x+1=11 | | -7x-(-2+14+-5x)=-6x-(8+6x+-7+9x) | | 15x-14x=12 | | 0.6p+0.2(40-p)=0 | | -1/2r=7 | | 5+2x-3-x=6+x-3 | | 4x(×-7)=0 | | 3(3x+5)=6(5x-2) | | 2x+x=510 | | 8t+14=15+2t | | .27+438=x | | 2x+5x/2-4x/5=3700 |

Equations solver categories