-1/4x+80=-2x+10

Simple and best practice solution for -1/4x+80=-2x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/4x+80=-2x+10 equation:



-1/4x+80=-2x+10
We move all terms to the left:
-1/4x+80-(-2x+10)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We get rid of parentheses
-1/4x+2x-10+80=0
We multiply all the terms by the denominator
2x*4x-10*4x+80*4x-1=0
Wy multiply elements
8x^2-40x+320x-1=0
We add all the numbers together, and all the variables
8x^2+280x-1=0
a = 8; b = 280; c = -1;
Δ = b2-4ac
Δ = 2802-4·8·(-1)
Δ = 78432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{78432}=\sqrt{16*4902}=\sqrt{16}*\sqrt{4902}=4\sqrt{4902}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(280)-4\sqrt{4902}}{2*8}=\frac{-280-4\sqrt{4902}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(280)+4\sqrt{4902}}{2*8}=\frac{-280+4\sqrt{4902}}{16} $

See similar equations:

| 10y-20=4y+16 | | 5v+19=25 | | 2c+5=2.5c | | -7x-11x26-x=9x | | 7134+d=18010 | | 7x+4x-x=3x+77 | | 6x-3x+4-2x=7x+9 | | 5(x-6)+6=7x+8 | | (4m+9)−3(2m−5=) | | -31=5y+7 | | 10x-8x+1=0 | | 16x-8=100 | | 14x=21-7 | | 2(3x-6)=4x-12+2x | | 4(t+16)^2=16 | | m+3/3=5 | | 8x-4=165 | | 8(4x+1)=3(10x+6) | | -5(-22/15)+y=0 | | 5x+3=3(2x+5 | | x+9+4x+x=5x+6 | | x+9+4x+x=5x+5 | | x+9+4x+x=5x+4 | | 23x+5=18 | | 7p+4=7+7p | | 5(m-3)=-60 | | 6x+11=45-8x | | -10-1f=-6f+10 | | -29=-5+2n | | 15x^2-25x=10 | | 7x-8x+4+7=-2+4x+3 | | 2x(x+6)=12 |

Equations solver categories