-1/5x+20=-x+4

Simple and best practice solution for -1/5x+20=-x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/5x+20=-x+4 equation:



-1/5x+20=-x+4
We move all terms to the left:
-1/5x+20-(-x+4)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
-1/5x-(-1x+4)+20=0
We get rid of parentheses
-1/5x+1x-4+20=0
We multiply all the terms by the denominator
1x*5x-4*5x+20*5x-1=0
Wy multiply elements
5x^2-20x+100x-1=0
We add all the numbers together, and all the variables
5x^2+80x-1=0
a = 5; b = 80; c = -1;
Δ = b2-4ac
Δ = 802-4·5·(-1)
Δ = 6420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6420}=\sqrt{4*1605}=\sqrt{4}*\sqrt{1605}=2\sqrt{1605}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-2\sqrt{1605}}{2*5}=\frac{-80-2\sqrt{1605}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+2\sqrt{1605}}{2*5}=\frac{-80+2\sqrt{1605}}{10} $

See similar equations:

| 182=-14x | | 2x+6+6x+38=180 | | -33+6n=-5-2(5n-2) | | /2=x+5 | | 2x+6+6x+38=190 | | 12x-5x-150=12x+65 | | 1x-10+4x-10=90 | | 1/3x-4=-13 | | 21-4x=10 | | 2|5w-7|+9=-7 | | 1/7y+2=-16 | | n/2-11=1 | | x/3-x+4/7=5 | | x+4x=68 | | 6x+4=11x-3 | | 3/144.9=3.9/x | | 12-46=5(x-3)-4 | | 4x+1+3x+9=150 | | (x=6)=(x-12) | | 12-46=5(x+3)-4 | | -35=-3v+10v | | 10x+100=9x | | -3b-8+2=21 | | 4x+3(-7+3x)=1-x | | .x-51.91=30.82 | | x+x+3x=68 | | 2(8x-7)^2=22 | | 8(3m+5)=2m-(4) | | -2y=-8−y | | -5x-3=3x+21 | | 6(x-4)=-2x=32 | | 4y−5=27 |

Equations solver categories