-1/5x-15=x+9

Simple and best practice solution for -1/5x-15=x+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/5x-15=x+9 equation:



-1/5x-15=x+9
We move all terms to the left:
-1/5x-15-(x+9)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We get rid of parentheses
-1/5x-x-9-15=0
We multiply all the terms by the denominator
-x*5x-9*5x-15*5x-1=0
Wy multiply elements
-5x^2-45x-75x-1=0
We add all the numbers together, and all the variables
-5x^2-120x-1=0
a = -5; b = -120; c = -1;
Δ = b2-4ac
Δ = -1202-4·(-5)·(-1)
Δ = 14380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14380}=\sqrt{4*3595}=\sqrt{4}*\sqrt{3595}=2\sqrt{3595}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-2\sqrt{3595}}{2*-5}=\frac{120-2\sqrt{3595}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+2\sqrt{3595}}{2*-5}=\frac{120+2\sqrt{3595}}{-10} $

See similar equations:

| 1x/2x+3=x-9 | | F(-3)=-5x+2 | | x*3=24 | | -15x-15=x+9 | | 9/14x=112 | | 1/2x+3=x-9 | | x+8.2+2.1=183 | | 5a=8=(-2a)=-7 | | 25-5=2+3(3+x) | | x6=86 | | -7n=-n-142 | | -8+v/4=20 | | 3+4*5/2=k-2 | | n/9+25=64 | | 2v+96=108 | | 17-3/4x=14 | | 2v+98=180 | | -16=-6+2y | | Y=0.77x5+950.25 | | 7+6x=17+4x | | w/4-15=8 | | x-3/2+3=4 | | 1/9+8g=112 | | 15.50x-2=17.50 | | n/2=8.5/0.25 | | 15(x-6)=7x+26 | | 9x-21=x+19 | | -6(9+5)-3x=-408+x | | 3x-2(4x+5)=-15x-39 | | 4x+10=70° | | A=(2x+8)(x-3) | | 7c=8c−8 |

Equations solver categories