-1/5x-40=-x+8

Simple and best practice solution for -1/5x-40=-x+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/5x-40=-x+8 equation:



-1/5x-40=-x+8
We move all terms to the left:
-1/5x-40-(-x+8)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
-1/5x-(-1x+8)-40=0
We get rid of parentheses
-1/5x+1x-8-40=0
We multiply all the terms by the denominator
1x*5x-8*5x-40*5x-1=0
Wy multiply elements
5x^2-40x-200x-1=0
We add all the numbers together, and all the variables
5x^2-240x-1=0
a = 5; b = -240; c = -1;
Δ = b2-4ac
Δ = -2402-4·5·(-1)
Δ = 57620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{57620}=\sqrt{4*14405}=\sqrt{4}*\sqrt{14405}=2\sqrt{14405}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-240)-2\sqrt{14405}}{2*5}=\frac{240-2\sqrt{14405}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-240)+2\sqrt{14405}}{2*5}=\frac{240+2\sqrt{14405}}{10} $

See similar equations:

| (X-2)*7=5x-4 | | 14-5y=1 | | 10+(h/3)=1 | | 3.6=1.6g | | 2(k-2)=k+5 | | -4x^2-7=-11 | | (x-4)^2-21=0 | | –5(x+1)=–4–7x | | F(4)-5=4n^2+3n | | 5(x+8)+8=5x+5 | | x=1/10-1/15 | | -7x-10=87 | | 5x+5-3x=14-2x+7=8x | | 5x-2=(x+1)×3 | | 5/2x-3=x+11 | | r(r+14)=61.25 | | 14-9x+2x=20 | | 3j+4(2+j)=10j+11 | | (2x+1)/3=3x-16 | | (x=4)^2-21=0 | | 9x^2=7-6x | | 2x/7=11/4 | | 3(2l+3)=6 | | 1/3k-3=5 | | 8x-2=2x-10 | | 23=3x-8x-17 | | 2k-(-6)=-18 | | x/8=3.2 | | (2w+1)^2(w^2)=66 | | (x^2)-(3/4x)-(7/64)=0 | | 4(3x-x)+6x=3x+8-x | | x^2+X+5=5.75 |

Equations solver categories