-1/6x-(x-3)=-36

Simple and best practice solution for -1/6x-(x-3)=-36 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/6x-(x-3)=-36 equation:



-1/6x-(x-3)=-36
We move all terms to the left:
-1/6x-(x-3)-(-36)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
We add all the numbers together, and all the variables
-1/6x-(x-3)+36=0
We get rid of parentheses
-1/6x-x+3+36=0
We multiply all the terms by the denominator
-x*6x+3*6x+36*6x-1=0
Wy multiply elements
-6x^2+18x+216x-1=0
We add all the numbers together, and all the variables
-6x^2+234x-1=0
a = -6; b = 234; c = -1;
Δ = b2-4ac
Δ = 2342-4·(-6)·(-1)
Δ = 54732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{54732}=\sqrt{4*13683}=\sqrt{4}*\sqrt{13683}=2\sqrt{13683}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(234)-2\sqrt{13683}}{2*-6}=\frac{-234-2\sqrt{13683}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(234)+2\sqrt{13683}}{2*-6}=\frac{-234+2\sqrt{13683}}{-12} $

See similar equations:

| 3–2x=13 | | 20x+2+138=180 | | 6-6x=9x-6 | | 4n^2+5=3 | | -3x+2(x+4)=-2 | | ﹣2(p﹣5)=﹣4 | | +70=3x+10 | | 7z-1=13 | | 1x+24=9x-8 | | 4.4+-7.6b=-b-7 | | -2(2x+3)=-26 | | 12b+14=3b-2+b | | 7(4x+8)=-12 | | n-5/8=-0.4 | | 7(4x+8)=-2 | | -2(6x-1)=-4(-2+2x) | | 5(-6x+3)=285 | | 5.2g+7=2.2g+13 | | 2x+11+3x+8x=180 | | 9b-2=6b-2+3b | | |3x+6|-5=16 | | 6(3x+1)=x-6x | | 3b+14=7b-6 | | x−3=−10 | | 1000+25x=400+75x | | v^2=1/9 | | -1=f/3-7 | | 13x-4+9x+8=180 | | (13y-17)=0.714285714285714 | | 60+0.20x=30+0.30x | | 126/x=3 | | t²=1/9 |

Equations solver categories