If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1/7x-4(1/7x-5)=-x+8
We move all terms to the left:
-1/7x-4(1/7x-5)-(-x+8)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 7x-5)!=0We add all the numbers together, and all the variables
x∈R
-1/7x-4(1/7x-5)-(-1x+8)=0
We multiply parentheses
-1/7x-4x-(-1x+8)+20=0
We get rid of parentheses
-1/7x-4x+1x-8+20=0
We multiply all the terms by the denominator
-4x*7x+1x*7x-8*7x+20*7x-1=0
Wy multiply elements
-28x^2+7x^2-56x+140x-1=0
We add all the numbers together, and all the variables
-21x^2+84x-1=0
a = -21; b = 84; c = -1;
Δ = b2-4ac
Δ = 842-4·(-21)·(-1)
Δ = 6972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6972}=\sqrt{4*1743}=\sqrt{4}*\sqrt{1743}=2\sqrt{1743}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-2\sqrt{1743}}{2*-21}=\frac{-84-2\sqrt{1743}}{-42} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+2\sqrt{1743}}{2*-21}=\frac{-84+2\sqrt{1743}}{-42} $
| x^2-16x=0. | | w/5-15=28 | | -2(3n+3)=-n-11 | | -7x-7(x-7)=24+5x | | a-8•7+10/5=9 | | 72×c=6 | | 6v^2+48v+90=0 | | -7x-3=20 | | -5x-2(9-9x)=9 | | 6.1+w/5=-6.4 | | 4w=w+3/4 | | 7x+14=3x=30 | | 120=5n+5 | | -33-9w=6+-3(-7+8w) | | 96+12x=15x | | 3c-7(-c+4)=2(c-5)+6c | | 5+3(q-4)=2(q+1( | | 13-a29;a=-30 | | 5.3g+7=2.3g+22 | | -3x+4=-(2x+8) | | 0=-49k^2+7k+20 | | 6u^2+2u-4=0 | | 20-2x=56-5x | | 0=x^2-3.4x+1.2 | | 11x-6x+168=11x+114 | | -5b=10/3 | | 0=49k^2+7k+20 | | 9+2r=-2(1+r)-1 | | 4x=5/9=3 | | 11x-6x+168=11x+144 | | 5x+23x-3=7(4x+6) | | 9w+3=3(+) |