-1/9x+5/9=1/5x-1

Simple and best practice solution for -1/9x+5/9=1/5x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -1/9x+5/9=1/5x-1 equation:



-1/9x+5/9=1/5x-1
We move all terms to the left:
-1/9x+5/9-(1/5x-1)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
Domain of the equation: 5x-1)!=0
x∈R
We get rid of parentheses
-1/9x-1/5x+1+5/9=0
We calculate fractions
(-5x)/3645x^2+(-729x)/3645x^2+25x/3645x^2+1=0
We multiply all the terms by the denominator
(-5x)+(-729x)+25x+1*3645x^2=0
We add all the numbers together, and all the variables
25x+(-5x)+(-729x)+1*3645x^2=0
Wy multiply elements
3645x^2+25x+(-5x)+(-729x)=0
We get rid of parentheses
3645x^2+25x-5x-729x=0
We add all the numbers together, and all the variables
3645x^2-709x=0
a = 3645; b = -709; c = 0;
Δ = b2-4ac
Δ = -7092-4·3645·0
Δ = 502681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{502681}=709$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-709)-709}{2*3645}=\frac{0}{7290} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-709)+709}{2*3645}=\frac{1418}{7290} =709/3645 $

See similar equations:

| 0.8+0.8k=0.6k=0.9 | | 2x+14=13x-239 | | 5x-45=8x-6 | | 18=6n-3n | | 3(3y+3)=4(5y+4) | | 22=3(x+5) | | 12z-8z=16 | | 2q-13=-11 | | 3^2x+1=12 | | -2=2(x-4) | | 4x-5=-5x+31 | | 24x^2−x=10x−1 | | 3(x+4)=6x+-3 | | -1/9(x-5)=1/5(x-5) | | 24x2−x=10x−1 | | 4.9t^2+(-8t)+2.8=0 | | -5r-2r=7 | | 8x-35=7x-32 | | 4x+14=5x-25 | | (15+y+6+2y=0) | | n(n+1)=1000 | | m=-4+6 | | 12x+11=4x+59 | | n/3-14=10 | | 6(n+5)=14 | | (-5,15+y+6+2y=0) | | B(x)=35.00-0.06x | | -0.1z=-0.4z+1.2 | | 2^(x+6)=576 | | 4.25/0.5=n | | 15^2+20^2=c^2 | | 12y=12y+9 |

Equations solver categories