-10(z+3)+5(3z-6)=4(2-4)+10

Simple and best practice solution for -10(z+3)+5(3z-6)=4(2-4)+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -10(z+3)+5(3z-6)=4(2-4)+10 equation:


Simplifying
-10(z + 3) + 5(3z + -6) = 4(2 + -4) + 10

Reorder the terms:
-10(3 + z) + 5(3z + -6) = 4(2 + -4) + 10
(3 * -10 + z * -10) + 5(3z + -6) = 4(2 + -4) + 10
(-30 + -10z) + 5(3z + -6) = 4(2 + -4) + 10

Reorder the terms:
-30 + -10z + 5(-6 + 3z) = 4(2 + -4) + 10
-30 + -10z + (-6 * 5 + 3z * 5) = 4(2 + -4) + 10
-30 + -10z + (-30 + 15z) = 4(2 + -4) + 10

Reorder the terms:
-30 + -30 + -10z + 15z = 4(2 + -4) + 10

Combine like terms: -30 + -30 = -60
-60 + -10z + 15z = 4(2 + -4) + 10

Combine like terms: -10z + 15z = 5z
-60 + 5z = 4(2 + -4) + 10

Combine like terms: 2 + -4 = -2
-60 + 5z = 4(-2) + 10

Multiply 4 * -2
-60 + 5z = -8 + 10

Combine like terms: -8 + 10 = 2
-60 + 5z = 2

Solving
-60 + 5z = 2

Solving for variable 'z'.

Move all terms containing z to the left, all other terms to the right.

Add '60' to each side of the equation.
-60 + 60 + 5z = 2 + 60

Combine like terms: -60 + 60 = 0
0 + 5z = 2 + 60
5z = 2 + 60

Combine like terms: 2 + 60 = 62
5z = 62

Divide each side by '5'.
z = 12.4

Simplifying
z = 12.4

See similar equations:

| 4/x-4/3=8/5x | | (x+3)(x+7)=equation | | log(2)x+log(x)8=4 | | 7(x+4)+8(x+4)=5x-5 | | 6x-3x+2=3x+2 | | 9(y+6)=6+8y | | 7+4(5x-6)=5-3(2x+1) | | -10x+15=6x+3 | | 3(x+2)=1 | | (4v-7)(1-v)=0 | | 6q-1=-p+20 | | 5x+3x+4=-12 | | 7(z+4)=6z | | 12(x-3)=-6-6 | | 3x/5+7/2=x/10 | | 5y-9=6y-1 | | T/10=3/35 | | A=Ao/2n | | 3/4=w/18 | | 3(2x-5y)-2(x-3y)= | | 2(3+x)=19 | | -9(y-1)=-8y-6 | | 3/4=w/35 | | -7(-2y+4)-y=4(y-3)-1 | | y=0.95x+6 | | 22-13x=-8-2x-18x | | sen(x)+2cos(x)=1 | | 6x-8=5x+90 | | 3x-40=x-18 | | 5p-3p-30=-18 | | 4x+4=31-5x | | 8x-9+x=180 |

Equations solver categories