If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-100+33/(1+r)(r)=0
Domain of the equation: (1+r)r!=0We add all the numbers together, and all the variables
r∈R
33/(r+1)r-100=0
We multiply all the terms by the denominator
-100*(r+1)r+33=0
We multiply parentheses
-100r^2-100r+33=0
a = -100; b = -100; c = +33;
Δ = b2-4ac
Δ = -1002-4·(-100)·33
Δ = 23200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23200}=\sqrt{400*58}=\sqrt{400}*\sqrt{58}=20\sqrt{58}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-20\sqrt{58}}{2*-100}=\frac{100-20\sqrt{58}}{-200} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+20\sqrt{58}}{2*-100}=\frac{100+20\sqrt{58}}{-200} $
| 9q2-5q=-4 | | 7x+35=-35 | | (5-v)(5v+9)=0 | | Y=2+x/0.5 | | x/3+13=21 | | 1/(1+r)*(33/r)-100=0 | | 5^(x-2)=12 | | 6s2+7=0 | | 1/(1+r)(33/r)-100=0 | | (x/5)+11=-9 | | 4s+8=5+4s | | p2+2p+1=0 | | 2n=15-7 | | v2+9=-6v | | x-4+6x=10 | | 40=x/3+8 | | 7p2=4p-6 | | (u-5)^2=2u^2-4u+30 | | 6v2+1=0 | | 3n=20-5 | | 6u2+4=0 | | r-5=3-7r | | -3(-4x-5)=15 | | 6u+4=0 | | x–7-12=0 | | 3r2-4r-6=0 | | 1-3x-5=-16 | | |x–7|-12=0 | | Y+z=180-50 | | y2+4y+4=0 | | 6-11x=(2x+3) | | 6v2+6v+8=0 |